March 5, 2004 The 21st Century COE Program of Tohoku university COE International Symposium

Dynamical Self-Consistent Field Theory for Inhomogeneous Dense Polymer Systems ---- Bridging the Gap between Microscopic Chain Structures and Dynamics of Macroscopic Domains ---

Toshihiro Kawakatsu Department of Physics, Tohoku University

CONTENTS

- 1. Inhomogeneity and viscoelasticity of dense polymer systems
- 2. Macroscopic phenomenological approach
- 3. Introducing microscopic information: Static self-consistent field (SCF) theory
- 4. Dynamical extension of SCF: Application to structural phase transition of blockcopolymer
- 5. New SCF approach to dynamics of highly deformed chains
- 6. Conclusions and future directions

Inhomogeneity of Dense Polymer Systems

Polymer Mesophase/Polymer Nano-Composites

Microphase Separation in Blockcopolymer Melt

Koubunshi Shashinshu

Salami Structure in HIPS (PS/PB)

Macromolecules 29, 2498 (1996)

Viscoelasticity

Viscoelasticity of Dense Polymer Systems

Die Swell (extrusion from a channel)

Viscous fluid Viscoelastic fluid

Purpose of the Study

Viscoelastic fluid + Inhomogeneity

Quantitative prediction of structure/dynamics of domains

- Phase separation (meso/macroscale)
- Chain structure (microscale)

Macroscopic Phenomenological Approach

(Jupp, Yuan & Kawakatsu, 2003)

Phenomenological constitutive equation

$$\sigma(t) = \int_{-\infty}^{t} G(t-s) \frac{d\gamma(s)}{ds} ds$$

Simulation of Viscoelastic Flow Model (Jupp, Yuan & Kawakatsu, 2003)

Dynamics of Viscoelastic Body

Density Field: Two fluid model (Doi & Onuki) $\nabla \cdot \mathbf{v} = 0 \qquad \left(\mathbf{v} \equiv \phi_A \mathbf{v}_A + \phi_B \mathbf{v}_B\right)$ $\mathbf{v}_A - \mathbf{v}_B = \frac{\phi_A \phi_B}{\varsigma} \left[-\nabla \mu + \alpha \nabla \cdot \sigma\right]$ $\frac{\partial \phi_A}{\partial t} = -\mathbf{v} \cdot \nabla \phi_A + \nabla \cdot \left[\frac{\phi_A^2 \phi_B^2}{\varsigma} \left(\nabla \mu - \alpha \nabla \cdot \sigma\right)\right]$

Constitutive Equation: Johnson-Segalman (JS) model

$$\frac{\sigma_i}{\tau_i} + \frac{d\sigma_i}{dt} = G_i \left(\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T \right) \qquad \sigma \equiv \sum_{i=1}^3 \sigma_i$$

Simulation of Viscoelastic Phase Separation

(Jupp, Yuan & Kawakatsu, 2003)

2d Simulation under steady shear ($\dot{\gamma} = \text{const.}$)

Two fluid model Johnson-Segalman (JS) model

$$\frac{\sigma_i}{\tau_i} + \frac{d\sigma_i}{dt} = G_i \left(\nabla \boldsymbol{v} + (\nabla \boldsymbol{v})^T \right) \qquad \sigma \equiv \sum_{i=1}^3 \sigma$$

Segment density

Flow field

Scattering intensity

arrow factor: 5

Simulation of Viscoelastic Flow Model (Jupp, Yuan & Kawakatsu, 2003)

Simulation results (shear-induced demixing case)

Stability diagram

X

 $We \equiv (elastic force) / (viscous force) \equiv \kappa \tau_A$

We = 4.0

 $\tau' \equiv \tau_{B} / \tau_{A} = 0.2$

Shear-induced demixing

homogeneoustwo-phase

Simulation of Viscoelastic Flow Model (Jupp, Yuan & Kawakatsu, 2003)

2d Simulation of shear banding (steady shear $\dot{\gamma} = \text{const.}$)

instability

Uniform shear rate

Inhomogeneous distribution of shear rate

Relation between Macroscopic and Microscopic Phenomena

Introducing information on chain structure into flow simulation

Probability distribution of chain conformation (spatially-folding shape)

Self-Consistent Field (SCF) Theory

Density Functional Theories (SCF vs. GL)

Basic Formalism of Static SCF Theory

Path integral for equilibrium chain conformation

$$\frac{\partial}{\partial n}Q(n,\boldsymbol{r};\boldsymbol{m},\boldsymbol{r}') = \left[\frac{b^2}{6}\nabla^2 - \beta V(\boldsymbol{r})\right]Q(n,\boldsymbol{r};\boldsymbol{m},\boldsymbol{r}')$$

 $F = F[\{Q(n,r;m,r')\}] = F[\phi(r)] \longrightarrow \frac{\text{Equilibrium}}{\text{structures}}$

Static SCF Simulation : Phase Diagram & Domain Structures

Block copolymer melt (Matsen & Schick; Phy. Rev. Lett. 72 (1994) 2660.)

Periodic structure

Fourier space analysis

Prediction of Complex Domain Structures (Morita, Kawakatsu, Doi, Yamaguchi, Takenaka & Hashimoto)

PS-PI diblock copolymer mixture

experiment

 $\phi_{\text{long}}:\phi_{\text{short}}=0.2:0.8$

3d simulation

Prediction of Complex Domain Structures (Morita, Kawakatsu, Doi, Yamaguchi, Takenaka & Hashimoto)

Prediction of Complex Domain Structures (Morita, Kawakatsu, Doi, Yamaguchi, Takenaka & Hashimoto)

Prediction of exotic structures

Dynamical Extension of SCF Theory

- Growth of irregular domains
- Structural phase transitions

Structural Phase Transition between Mesophases

lamellar

- Growth of unstable modes
- Kinetic pathway
- Conformation change

SAXS Experiment on Microemulsion (Imai, et al., J. Chem. Phys. 119 (2003) 8103.)

Intensity/(arb.)

Modulation fluctuation layer

GL Model (Weak segregation)

Stability Analysis on GL Model (Imai, et al., J. Chem. Phys., 119 (2003) 8103.)

Amplitude modulation

 $\lambda_{03}^{-} = 0$ **Undulation**

Bright region : majority phase (surfactant) Dark region: minority phase (water)

Dynamics of Structural Phase Transition (M.Nonomura, *et al., J. Phys. Condens. Matt.* 15 (2003) L423.)

 $\mathbf{Gyroid} \rightarrow \mathbf{Cylinder}$

Ginzburg-Landau model (weak segregation) + Fourier mode expansion

Changes in symmetry & periodicity (a few %)

Many modes (12 + 6)

 $Gyroid(1,1,1) \rightarrow Cylinder:$ epitaxial growth

Gyroid \rightarrow **Cylinder** (Strong segregation)

Real space dynamic SCF + variable system size Chain architecture & stability

Automatic adjustment of periodicity

Density distribution

SCF calculation

 $\phi(\mathbf{r},t)$

Chain architecture

$$\frac{\partial}{\partial n}Q(n,\boldsymbol{r};n',\boldsymbol{r}') = \left[\frac{b^2}{6}\nabla^2 - \beta V(\boldsymbol{r})\right]Q(n,\boldsymbol{r};n',\boldsymbol{r}')$$

Free energy

Local diffusion

$$F[\{\phi(r)\}]$$

Hydrodynamic effect

$$\frac{\partial \phi(\mathbf{r},t)}{\partial t} + \nabla \cdot \left\{ \phi(\mathbf{r},t) \mathbf{v}(\mathbf{r},t) \right\} = L \nabla^2 \frac{\delta F}{\delta \phi(\mathbf{r},t)}$$

Box size adjustment

$$\frac{\partial}{\partial t}L_{\alpha} = -M_{\alpha} \frac{\partial (F/V)}{\partial L_{\alpha}}$$

Change in periodicity

 A_8-B_{12} blockcopolymer melt, $\chi N = 20$ Real space 2-d dynamic SCF simulation with weak shear

A₇-B₁₃ blockcopolymer melt, $\chi N = 20 \rightarrow 15 (G \rightarrow G/C)$ Real space dynamic SCF simulation with weak shear

Direct observation of the kinetic pathway

(1,0,0)-growth

Real space dynamics under shear

Modulated cylinder (Metastable)

Variable box size

Change in periodicity in perpendicular direction

Effect of External Flow & Kinetic Pathway (Groot, Madden & Tildesley, J. Chem. Phys. 110 (1999) 9739.)

With hydrodynamic effect

Without hydrodynamic effect

Artificial stabilization of interconnected transient structure

Dissipative Particle Dynamics (DPD)

Brownian Dynamic (BD)

Kinetic Pathway

(Groot, Madden & Tildesley, J. Chem. Phys. 110 (1999) 9739.)

DPD simulation of kinetic pathway in block copolymer melt

Viscoelastic Properties of Mesophases

Sheared mesophase

Sheared brushes

Standard dynamic SCF

- Highly-deformed conformation
- Entanglements
- External/internal flow

Limitations of standard SCF

$$Q(n, \boldsymbol{r}; n', \boldsymbol{r}') \equiv \sum_{\text{all conformation}} \exp\left[-\beta \sum_{k} V(\boldsymbol{r}_{k})\right]$$

Non-equilibrium conformation (Viscoelasticity, *etc*.)

Sheared polymer brushes

(Osaki, et al., Macromolecules 15 (1982) 1068.)

Extension of SCF to Highly Deformed Chains

(Shima, Kuni, Okabe, Doi, Yuan, and Kawakatsu, 2003)

Bond orientation tensor S(n, r)

Path Integral

$$\frac{\partial}{\partial n}Q(n,\boldsymbol{r};m,\boldsymbol{r}') = [S(n,\boldsymbol{r}):\nabla\nabla - \beta V(\boldsymbol{r})]Q(n,\boldsymbol{r};m,\boldsymbol{r}')$$

Bond orientation S(n, r)

reptation, flow deformation, constraint release

Extension of SCF to Highly Deformed Chains

(Shima, Kuni, Okabe, Doi, Yuan, and Kawakatsu, 2003)

Path Integral

$$\frac{\partial}{\partial n}Q(n,\boldsymbol{r};m,\boldsymbol{r}') = [\boldsymbol{S}(n,\boldsymbol{r}):\nabla\nabla - \beta V(\boldsymbol{r})]Q(n,\boldsymbol{r};m,\boldsymbol{r}')$$

Reptation dynamics for S(n, r, t)

$$\frac{\partial}{\partial t} S(n, \mathbf{r}, t) = -\frac{\partial}{\partial n} j(n, \mathbf{r}, t) - \nabla \cdot [\mathbf{v}(\mathbf{r}, t) \cdot S(n, \mathbf{r}, t)] + \left[\kappa(\mathbf{r}, t) \cdot S(n, \mathbf{r}, t) + S(n, \mathbf{r}, t) \cdot \kappa^{T}(\mathbf{r}, t) \right] + \frac{\partial}{\partial t} S(n, \mathbf{r}, t) \bigg|_{\text{constraint release}}$$

$$\kappa(\mathbf{r},t) \equiv \nabla v(\mathbf{r},t)$$
 Velocity gradient tensor

Simulation of Polymer Melt Under Step Shear Deformation

(Shima, Kuni, Okabe, Doi, Yuan, and Kawakatsu, 2003)

Comparison with reptation theory for uniform systems

experiment

simulation

Simulation of Polymer Brushes Under Steady Shear Deformation

(Shima, Kuni, Okabe, Doi, Yuan, and Kawakatsu, 2003)

Single Chain Conformation ($\kappa_{yx} = 1.0$)

Simulation of Polymer Brushes Under Steady Shear Deformation

(Shima, Kuni, Okabe, Doi, Yuan, and Kawakatsu, 2003)

Segment Distribution

End Segment Distribution

X

Dynamical properties that cannot be reproduced by standard SCF

Conclusion and Future Direction

Polymer Mesophase/Polymer Nano-Composites

structural transition/viscoelastic behavior based on microscopic chain structure

Collaborators

T.Shima (Ericsson Co., Ltd.) H.Kuni (IBM Co., Ltd.) Y.Okabe (Tokyo Metropolitan Univ.) M.Doi (Nagoya Univ.) X.F.Yuan (Kings College)

M.Imai & K.Nakaya (Ochanomizu Univ.)

T. Honda (Nippon Zeon Co. Ltd.)

T.Hashimoto, M.Takenaka, D.Yamaguchi (Kyoto Univ.) H.Morita (JST,CREST)

END