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1. introduction

It is classical that the the magnetic Laplacian on L2(R2);
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has only eigenvalues(Landau levels) {|b|(2k + 1)}k=0,1,..., where b de-
notes the magnetic flux. What happens when one consider its discrete
analogue?

The Harper operator was designed to describe behavior of an electron
moving on the square lattice exposed to a constant magnetic field by
P. G. Harper [H];
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(ϕ ∈ `2(Z2), (l, m) ∈ Z2),

where b is the magnetic flux. Seemingly it is a very simple operator
but, compared with the magnetic Laplacian on R2, its spectrum has a
very complicated feature. For example, it was shown by M. D. Choi,
G. Elliott, N. Yui [CEY] that its spectrum has a band structure (i.e a
finite sum of finite closed intervals) when b ∈ Q, and is a Cantor set
when b 6∈ Q.

There is no physical reason to distinglish a rational magnetic field
from an irrational one. Thus people are interested how the spectrum
of Hb depends on the magnetic flux b, and regularity of the gap edges
of the spectra in b is intensively studied. It is summarized as the gap
edges are Hölder continuous of 1/2-exponent, and there exisit right and
left derivatives but not differentiable at b ∈ Q.[HS]. See [Be2], [Be1]
for more details.

J. Bellissard observed that the Harper operator is an element of a C∗-
algebra, the non-commutative torus Ab. The C∞-structure is defined
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by A.Connes of the continuous field AI = “ ∪b∈I Ab” of the the non-
commutative tori Ab parametrized by b in an interval I. The Harper
operator is a smooth self-adjoint element of AI in this sense. He showed
that the gap edge of not only the Harper operator but also of a self-
adjoint operator, which is smooth enough in AI is Lipschiz continuous
when the gap width is positive [Be1]．

In this article, we discuss the same Lipschiz continuity for a mag-
netic transition operator on a more general graphs, namely a crystal
lattice. A crystal lattice is an abelian cover of a finite graphs and
typical examples are Zd-lattice，the triangular lattice, the hexagonal
lattice.

On a crysatl lattice, we define the magnetic transition operator,
which is a generalization of the Harper operator, and see it can be
regarded as an element of a certain C∗-algebra. In this way, we follow
the approach by J. Bellissard and obtain the similar result.

2. magnetic transiton operators

First of all, we recall basic properties of the magnetic Laplacian of
Rd．A magnetic field of Rd is a closed 2-form B =

∑

i<j bijdxi∧dxj and
a 1-form A with dA = B is called a vector potential. The connection
defined by A on the trivial line bundle is denoted by ∇A := d−

√
−1A

and its adjoint operator by ∇∗
A. The magnetic Laplacian ∆A is defined

by ∆A = ∇∗
A∇A. Although a vector potential for a given magnetic

field B is not unique but the unitary equivalent class of ∆A is uniquely
determined for a given magnetic field. A magnetic filed B is periodic
with respect to a lattice Γ in Rd (i.e. γ∗B = B, ∀γ ∈ Γ) if and only if
an associated vector field A is weak Γ-invariant, namely there exists a
function sγ of Rd such that

γ∗A− A = dsγ (∀γ ∈ Γ).

We take this as a model and define magnetic transition operators on
a crystal lattice as its discretizations.

Let us denote the set of all oriented edges of X by E，the origin and
the terminus of e ∈ E by o(e) and t(e), respectively, the inverse edge
of e by e．A positive function p : E → R+of E is called a symmetric

transition probability when it admits a positive function m : X → R+

of X satisfying
∑

e∈Ex

p(e) = 1 (∀x ∈ X),

m(o(e))p(e) = m(t(e))p(e) =: m(e) (∀e ∈ E),
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where Ex = {e ∈ E | o(e) = x}．A function ω : E → R satisfies

ω(e) = −ω(e),

γ∗ω − ω = dsγ (∀γ ∈ Γ)

is said to be a weak Γ-invariant 1-form. It is a discrete analogue of a
vector potential.

Put

`2(X) := {ϕ : X → C | ‖ϕ‖2 =
∑

x∈X

m(x)|ϕ(x)|2}.

Given a Γ-invariant transition probability p and a weak Γ-invariant 1-
form ω, we define the magnetic transition operator Hω : `2(X) → `2(X)
by

Hωϕ(x) :=
∑

e∈Ex

p(e)e−
√
−1ω(e)ϕ(t(e)).

Note that it is the transition operator for a symmetric random walk
when ω ≡ 0.

Example: Restrict the weak Z2-invariant 1-formA = b
2
(−ydx+xdy)

of R2 to the Z2-lattice, we have a weak Z2-invariant 1-form ω of the
Z2-lattice. The magnetic transition operator associated with this ω
and the transition probability p with p(e) = 1/4 for all edges e of the
Z2-lattice is nothing but the Harper operator.

We say “magnetic” transition operators but what is the “magnetic
field”? As a crystal lattice X is a one-dimensional object, we can-
not define a magnetic field as a closed 2-form but we use the group
cohomology instead. For that, recall the exact sequence:

0 → H1(Γ,R)
ι→ H1(X0,R)

π∗

→ H1(X,R)Γ Θ→ H2(Γ,R) → 0.

A weak Γ-invariant 1-form ω defines a class of Γ-invariant cohomol-
ogy in H1(X,R)Γ. The magnetic transiton operators associated with
weak Γ-invariant 1-form of the same class in H1(X,R)Γ are unitarily
equivalent. We call Θ[ω] ∈ H2(Γ,R) magnetic flux class of [ω].

When X is the universal abelian cover of X0, i.e. Γ = H1(X0)，in the
above exact sequence, we have H1(Γ,R) = Hom(Γ,R) = H1(X0,R)
and ι is isomorphic. Thus so it Θ. In this case, for B ∈ H2(Γ,R),
there exists the unique class [ω] ∈ H1(X,R)Γ of weak Γ-invariant 1-
form ω such that Θ[ω] = B. All Hω’s are unitarily equivalent and we
sometimes denote them even by HB when we are concerned with their
spectra. For a general abelian cover X, Θ[ω1] = Θ[ω2] only means
that ω2 = ω1 + π∗ω0 and there remains some freedom for the choice of
bounded 1-forms ω0 ∈ H1(X0,R)/H1(Γ,R). We remark that there is,
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however, the standard representative ωB for a given B, with which the
central limit theorem holds [K1].

3. formulation by using the C∗-algebras

Without magnetic field, the (magnetic) transitin operator H0 com-
mutes with the Γ-action, which allows us to use the direct integral
decomposition of the regular representation of Γ to analyze the spec-
trum of H0. When a magnetic field presents, the magnetic transition
operator no more commutes with the Γ-action but it does with the
magnetic translations. To make use of this, J. Bellissard associated the
Harper operator Hb with an element of the non-commutative torus Ab

defined by M. A. Rieffel[Rie]. Then by using the notion of the con-
tinuous field of C∗-algebras: b ∈ I 7→ Ab, he studied the continuity
of the spectra of Hb in the magnetic flux b[Be1]．In the similar way,
our magnetic transition operators can be considered as elements of a
certain C∗-algebra [S]．

Let X
Γ→ X0 be a crystal lattice. and take a weak Γ-invariant 1-form

ω:
γ∗ω − ω = dsγ (∀γ ∈ Γ)

associated with Θ(ω) = B ∈ H2(Γ,R). We denote the unitary equiv-
alent class of Hω by HB. Put W = C(X0,C), the space of functions
of the finite graph X0. Note it is a finite dimensional Hilbert space.
Let `2(Γ,W ) be the space of W -valued `2 functions of Γ and define the
right magnetic translations Uα : `2(Γ,W ) → `2(Γ,W )，for α ∈ Γ, by

(Uαφ)(γ) = esqrt−1B(γ,α)φ(γα) (φ ∈ `2(Γ,W )).

It is easy to check UαUβ = e
√
−1B(α,β)Uαβ, U∗

α = U−1
α . We give

C(Γ, B) := {A =
∑

α:finite sum

a(α)Uα : a(α) ∈ End(W )}

a ∗-algebra structure by
(

∑

aαUα

)

·
(

∑

bβUβ

)

=
∑

e
√
−1B(α,β)aαbβUαβ

∗
(

∑

aαUα

)

=
∑

a∗α−1e−
√
−1B(α,α−1)Uα

and the completion of C(Γ, B) ⊂ B(`2(Γ,W )) with respect to the op-
erator norm is denoted by A(Γ, B). It is the C∗-algebra we are going
to use.

The unitary equivalence between `2(Γ,W ) and `2(X) is given, by
defining φ ∈ `2(Γ,W ), for ϕ ∈ `2(X), by

φ(α)(x0) = ϕ(αx0)e
√
−1sα(αx0) (α ∈ Γ, x0 ∈ X0).
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Through this identification, we regard HB as an element of C(Γ, B),
given explicitely as

HB =
∑

aαUα,

where aα ∈ End(W ) is defined by

(aαψ)(x0) =
∑

e∈Ex0
,γ−1t(e)∈X0

p(e)e−
√
−1(ω(e)+sγ (t(e)))ψ(γ−1t(e)).

Now take a Γ-equivariant map Φ : X → Γ ⊗ R and consider B as a
skewsymmetric 2-form of Γ ⊗ R, then a representative ω of Θ[ω] = B

ω(e) = B(dΦ(e),Φ(o(e)),

sα(x) = B(α,Φ(x))

gives a smooth aα in B.

4. differential structures

In the previous section, we see HB ∈ C(Γ, B) ⊂ A(Γ, B). As we
want to study how the spectra of HB depend on B, we need a notion
of a “collection” “ ∪B A(Γ, B)” of all these C∗-algebras in which each
of HB belongs to.

Let B be a magnetic flux class and Ω be its open neighborhood in
H2(Γ,R) ∼= Rd(d−1)/2. Put θ : B ∈ Ω 7→ e

√
−1B(·,·) ∈ H2(Γ,R) and UΩ

α

are the formal unitary elements satisfying

UΩ
α U

Ω
β = θ(α, β)UΩ

αβ,

aαU
Ω
β = UΩ

β aβ,

(UΩ
α )∗ = (UΩ

α )−1 = UΩ
α−1 .

Put

Pk
Ω = {A =

∑

aαU
Ω
α finite sum | aα ∈ Ck(Ω,End(W ))},

and define the evaluation map ρB : Pk
Ω → Pk

B by UΩ
α 7→ UB

α . The
C∗-norm of Pk

B is given as usual by

‖A‖B = sup
π∈Rep

‖π(A)‖,

and let AΩ be the completion of Pk
Ω with respect to

‖A‖Ω = sup
B∈Ω

‖ρB(A)‖B.

We also define the trace τ : AΩ → C(Ω) by τ(A) = dim(W )−1 trW a0.
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The differencial structure of AΩ is endowed, for A ∈ P∞
Ω ,

∂iA =
∑

α∈Γ

√
−1αiaαUα (i = 1, . . . , d),

δijA =
∑

α∈Γ

∂aα

∂bij
Uα, (1 ≤ i < j ≤ d).

Here ∂ represents a derivation in space and δ that in the magnetic flux.
We see that ∂i is a ∗-derivation and

δij(∗A) = ∗δij(A)

δij(AB) = (δijA)B + A(δijB) −
√
−1(∂iA∂jB − ∂jA∂iB).

Thus it is reasonable to define the order of each is ord(∂i) = 1, and
ord(δij) = 2. The space

Cl,n(AΩ) = {A ∈ AΩ | ‖δs∂r(A)‖ <∞, 0 ≤ |s| ≤ l, 0 ≤ 2|s| + |r| ≤ n},
is dense in AΩ and there exist a norm which makes it a Banach algebra.

5. lipschtiz continuity

Note that we don’t use the factX being an abelian cover(i.e. Γ ∼= Zd)
so far. Indeed, everything works well with a Γ-cover X of a finite
graph X0 where Γ is not necessarily abelian. Finally, from now on, the
assumption Γ ∼= Zd is essential.

Let Ω be an open neighborhood of B0 in H2(Γ,R) and we put B′ =
B0 + hB ∈ Ω．(h ∈ (0, ε)). As we consider B as a skew-symmetric 2-
form of Γ⊗R, we take the orthogonal complement V of the null space of
B in Γ⊗R and write the orthogonal projection to V by p : Γ⊗R → V .
The Weyl representation (πh,Hw) of AhB on Hw ⊂ L2(V,W ) is given
by

(πh(U
B
α )ϕ)(x) = e

√
−1B(x,

√
hα)ϕ(x+

√
hp(α)) (α ∈ Γ, ϕ ∈ Hw).

We also define a ∗-homomorphism AB′ → AB0
⊗ B(Hw) by UB′

α →
UB0

α ⊗πh(U
B
α ) and let A′ be the C∗ subalgebra of AB0

⊗B(Hw) generated
by UB0

α ⊗ πh(U
B
α ). Then it is isomorphic to AB′ . We express A =

∑

aαUα ∈ AB′ as an element of A′ through this isomorphism; Let

a(h, ξ) :=
∑

aα(B′)e
√
−1B(α,ξ)eh|p(α)|2B/2UB0

α ∈ AB0
,

and Tξ : Hw → Hw be the integral operator with its kernel

tξ(x, y) = π−ke
√
−1B(ξ,y−x)/2e−|y−x|2

B
/4,

then

A(B′) = (4πh)−k

∫

V

a(h, ξ) ⊗ T ξ√
h

dBξ.
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By using this expression, we treat all A(B ′) together and reduce the
problem to estimate of elements a(h, ξ) in AB0

and obtain the following
theorem.

Theorem 1. Let H ∈ C1,d/2+2+ε(AΩ) be a self-adjoint element and

denote its gap edges by E(B). If the gap width is positive at B0 ∈ Ω,

then in a small neighborhood U(B0) of B0, E(B) is a Lipschitz function,

namely, for B1, B2 ∈ U(B0),

|E(B2) − E(B1)| ≤ c(H)[ sup
B∈U(B0)

W g(B)]−(d/2+4)|B2 −B1|

holds.
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