ELECTRON TRANSPORT ON A CRYSTAL LATTICE WITH AND WITHOUT MAGNETIC FIELD

MOTOKO KOTANI

1. INTRODUCTION

It is classical that the magnetic Laplacian on $L^2(\mathbb{R}^2)$;

$$-\left(\frac{\partial}{\partial x} + \frac{ib}{2}y\right)^2 - \left(\frac{\partial}{\partial y} - \frac{ib}{2}x\right)^2, \quad (b \neq 0)$$

has only eigenvalues(Landau levels) $\{|b|(2k+1)\}_{k=0,1,\dots}$, where b denotes the magnetic flux. What happens when one consider its discrete analogue?

The Harper operator was designed to describe behavior of an electron moving on the square lattice exposed to a constant magnetic field by P. G. Harper [H];

$$\begin{aligned} (H_b\varphi)(l,m) \\ &= \frac{1}{4} [e^{\sqrt{-1}bm/2}\varphi(l+1,m) + e^{-\sqrt{-1}bm/2}\varphi(l-1,m) \\ &\quad + e^{-\sqrt{-1}bl/2}\varphi(l,m+1) + e^{\sqrt{-1}bl/2}\varphi(l,m-1)] \\ &\quad (\varphi \in \ell^2(\mathbb{Z}^2), (l,m) \in \mathbb{Z}^2), \end{aligned}$$

where b is the magnetic flux. Seemingly it is a very simple operator but, compared with the magnetic Laplacian on \mathbb{R}^2 , its spectrum has a very complicated feature. For example, it was shown by M. D. Choi, G. Elliott, N. Yui [CEY] that its spectrum has a band structure (i.e a finite sum of finite closed intervals) when $b \in \mathbb{Q}$, and is a Cantor set when $b \notin \mathbb{Q}$.

There is no physical reason to distinglish a rational magnetic field from an irrational one. Thus people are interested how the spectrum of H_b depends on the magnetic flux b, and regularity of the gap edges of the spectra in b is intensively studied. It is summarized as the gap edges are Hölder continuous of 1/2-exponent, and there exisit right and left derivatives but not differentiable at $b \in \mathbb{Q}$.[HS]. See [Be2], [Be1] for more details.

J. Bellissard observed that the Harper operator is an element of a C^* algebra, the non-commutative torus \mathcal{A}_b . The C^{∞} -structure is defined by A.Connes of the continuous field $\mathcal{A}_I = \cup_{b \in I} \mathcal{A}_b$ of the the noncommutative tori \mathcal{A}_b parametrized by b in an interval I. The Harper operator is a smooth self-adjoint element of \mathcal{A}_I in this sense. He showed that the gap edge of not only the Harper operator but also of a selfadjoint operator, which is smooth enough in \mathcal{A}_I is Lipschiz continuous when the gap width is positive [Be1].

In this article, we discuss the same Lipschiz continuity for a magnetic transition operator on a more general graphs, namely a crystal lattice. A crystal lattice is an abelian cover of a finite graphs and typical examples are \mathbb{Z}^d -lattice, the triangular lattice, the hexagonal lattice.

On a crysatl lattice, we define the magnetic transition operator, which is a generalization of the Harper operator, and see it can be regarded as an element of a certain C^* -algebra. In this way, we follow the approach by J. Bellissard and obtain the similar result.

2. MAGNETIC TRANSITON OPERATORS

First of all, we recall basic properties of the magnetic Laplacian of \mathbb{R}^d . A magnetic field of \mathbb{R}^d is a closed 2-form $B = \sum_{i < j} b_{ij} dx_i \wedge dx_j$ and a 1-form A with dA = B is called a vector potential. The connection defined by A on the trivial line bundle is denoted by $\nabla_A := d - \sqrt{-1}A$ and its adjoint operator by ∇_A^* . The magnetic Laplacian Δ_A is defined by $\Delta_A = \nabla_A^* \nabla_A$. Although a vector potential for a given magnetic field B is not unique but the unitary equivalent class of Δ_A is uniquely determined for a given magnetic field. A magnetic field B is periodic with respect to a lattice Γ in \mathbb{R}^d (i.e. $\gamma^*B = B, \forall \gamma \in \Gamma$) if and only if an associated vector field A is weak Γ -invariant, namely there exists a function s_{γ} of \mathbb{R}^d such that

$$\gamma^* A - A = ds_{\gamma} \quad (\forall \gamma \in \Gamma).$$

We take this as a model and define magnetic transition operators on a crystal lattice as its discretizations.

Let us denote the set of all oriented edges of X by E, the origin and the terminus of $e \in E$ by o(e) and t(e), respectively, the inverse edge of e by \overline{e} . A positive function $p: E \to \mathbb{R}_+$ of E is called a *symmetric transition probability* when it admits a positive function $m: X \to \mathbb{R}_+$ of X satisfying

$$\sum_{e \in E_x} p(e) = 1 \quad (\forall x \in X),$$
$$m(o(e))p(e) = m(t(e))p(\overline{e}) =: m(e) \qquad (\forall e \in E),$$

where $E_x = \{e \in E \mid o(e) = x\}$. A function $\omega : E \to \mathbb{R}$ satisfies

$$\omega(\overline{e}) = -\omega(e),$$

$$\gamma^* \omega - \omega = ds_{\gamma} \quad (\forall \gamma \in \Gamma)$$

is said to be a weak Γ -invariant 1-form. It is a discrete analogue of a vector potential.

Put

$$\ell^2(X) := \{ \varphi : X \to \mathbb{C} \mid \|\varphi\|^2 = \sum_{x \in X} m(x) |\varphi(x)|^2 \}.$$

Given a Γ -invariant transition probability p and a weak Γ -invariant 1form ω , we define the magnetic transition operator $H_{\omega} : \ell^2(X) \to \ell^2(X)$ by

$$H_{\omega}\varphi(x) := \sum_{e \in E_x} p(e)e^{-\sqrt{-1}\omega(e)}\varphi(t(e)).$$

Note that it is the transition operator for a symmetric random walk when $\omega \equiv 0$.

Example: Restrict the weak \mathbb{Z}^2 -invariant 1-form $A = \frac{b}{2}(-ydx+xdy)$ of \mathbb{R}^2 to the \mathbb{Z}^2 -lattice, we have a weak \mathbb{Z}^2 -invariant 1-form ω of the \mathbb{Z}^2 -lattice. The magnetic transition operator associated with this ω and the transition probability p with p(e) = 1/4 for all edges e of the \mathbb{Z}^2 -lattice is nothing but the Harper operator.

We say "magnetic" transition operators but what is the "magnetic field"? As a crystal lattice X is a one-dimensional object, we cannot define a magnetic field as a closed 2-form but we use the group cohomology instead. For that, recall the exact sequence:

$$0 \to H^1(\Gamma, \mathbb{R}) \stackrel{\iota}{\to} H^1(X_0, \mathbb{R}) \stackrel{\pi^*}{\to} H^1(X, \mathbb{R})^{\Gamma} \stackrel{\Theta}{\to} H^2(\Gamma, \mathbb{R}) \to 0.$$

A weak Γ -invariant 1-form ω defines a class of Γ -invariant cohomology in $H^1(X, \mathbb{R})^{\Gamma}$. The magnetic transiton operators associated with weak Γ -invariant 1-form of the same class in $H^1(X, \mathbb{R})^{\Gamma}$ are unitarily equivalent. We call $\Theta[\omega] \in H^2(\Gamma, \mathbb{R})$ magnetic flux class of $[\omega]$.

When X is the universal abelian cover of X_0 , i.e. $\Gamma = H_1(X_0)$, in the above exact sequence, we have $H^1(\Gamma, \mathbb{R}) = \operatorname{Hom}(\Gamma, \mathbb{R}) = H^1(X_0, \mathbb{R})$ and ι is isomorphic. Thus so it Θ . In this case, for $B \in H^2(\Gamma, \mathbb{R})$, there exists the unique class $[\omega] \in H^1(X, \mathbb{R})^{\Gamma}$ of weak Γ -invariant 1form ω such that $\Theta[\omega] = B$. All H_{ω} 's are unitarily equivalent and we sometimes denote them even by H_B when we are concerned with their spectra. For a general abelian cover $X, \Theta[\omega_1] = \Theta[\omega_2]$ only means that $\omega_2 = \omega_1 + \pi^* \omega_0$ and there remains some freedom for the choice of bounded 1-forms $\omega_0 \in H^1(X_0, \mathbb{R})/H^1(\Gamma, \mathbb{R})$. We remark that there is, however, the standard representative ω_B for a given B, with which the *central limit theorem* holds [K1].

3. Formulation by using the C^* -algebras

Without magnetic field, the (magnetic) transitin operator H_0 commutes with the Γ -action, which allows us to use the direct integral decomposition of the regular representation of Γ to analyze the spectrum of H_0 . When a magnetic field presents, the magnetic transition operator no more commutes with the Γ -action but it does with the magnetic translations. To make use of this, J. Bellissard associated the Harper operator H_b with an element of the non-commutative torus \mathcal{A}_b defined by M. A. Rieffel[Rie]. Then by using the notion of the continuous field of C^* -algebras: $b \in I \mapsto \mathcal{A}_b$, he studied the continuity of the spectra of H_b in the magnetic flux b[Be1]. In the similar way, our magnetic transition operators can be considered as elements of a certain C^* -algebra [S].

Let $X \xrightarrow{\Gamma} X_0$ be a crystal lattice. and take a weak Γ -invariant 1-form ω :

$$\gamma^*\omega - \omega = ds_\gamma \quad (\forall \gamma \in \Gamma)$$

associated with $\Theta(\omega) = B \in H^2(\Gamma, \mathbb{R})$. We denote the unitary equivalent class of H_{ω} by H_B . Put $W = C(X_0, \mathbb{C})$, the space of functions of the finite graph X_0 . Note it is a finite dimensional Hilbert space. Let $\ell^2(\Gamma, W)$ be the space of W-valued ℓ^2 functions of Γ and define the right magnetic translations $U_{\alpha} : \ell^2(\Gamma, W) \to \ell^2(\Gamma, W)$, for $\alpha \in \Gamma$, by

$$(U_{\alpha}\phi)(\gamma) = e^{sqrt - 1B(\gamma,\alpha)}\phi(\gamma\alpha) \quad (\phi \in \ell^2(\Gamma, W)).$$

It is easy to check $U_{\alpha}U_{\beta} = e^{\sqrt{-1}B(\alpha,\beta)}U_{\alpha\beta}, U_{\alpha}^* = U_{\alpha}^{-1}$. We give

$$C(\Gamma, B) := \{ A = \sum_{\alpha: \text{finite sum}} a(\alpha) U_{\alpha} : a(\alpha) \in \text{End}(W) \}$$

a *-algebra structure by

$$\left(\sum a_{\alpha}U_{\alpha}\right)\cdot\left(\sum b_{\beta}U_{\beta}\right)=\sum e^{\sqrt{-1}B(\alpha,\beta)}a_{\alpha}b_{\beta}U_{\alpha\beta}$$
$$*\left(\sum a_{\alpha}U_{\alpha}\right)=\sum a_{\alpha^{-1}}^{*}e^{-\sqrt{-1}B(\alpha,\alpha^{-1})}U_{\alpha}$$

and the completion of $C(\Gamma, B) \subset \mathbb{B}(\ell^2(\Gamma, W))$ with respect to the operator norm is denoted by $\mathcal{A}(\Gamma, B)$. It is the C^{*}-algebra we are going to use.

The unitary equivalence between $\ell^2(\Gamma, W)$ and $\ell^2(X)$ is given, by defining $\phi \in \ell^2(\Gamma, W)$, for $\varphi \in \ell^2(X)$, by

$$\phi(\alpha)(x_0) = \varphi(\alpha x_0) e^{\sqrt{-1}s_\alpha(\alpha x_0)} \quad (\alpha \in \Gamma, x_0 \in X_0).$$

Through this identification, we regard H_B as an element of $C(\Gamma, B)$, given explicitly as

$$H_B = \sum a_{\alpha} U_{\alpha},$$

where $a_{\alpha} \in \text{End}(W)$ is defined by

$$(a_{\alpha}\psi)(x_{0}) = \sum_{e \in E_{x_{0}}, \gamma^{-1}t(e) \in X_{0}} p(e)e^{-\sqrt{-1}(\omega(e) + s_{\gamma}(t(e)))}\psi(\gamma^{-1}t(e)).$$

Now take a Γ -equivariant map $\Phi : X \to \Gamma \otimes \mathbb{R}$ and consider B as a skewsymmetric 2-form of $\Gamma \otimes \mathbb{R}$, then a representative ω of $\Theta[\omega] = B$

$$\omega(e) = B(d\Phi(e), \Phi(o(e)))$$
$$s_{\alpha}(x) = B(\alpha, \Phi(x))$$

gives a smooth a_{α} in B.

4. DIFFERENTIAL STRUCTURES

In the previous section, we see $H_B \in C(\Gamma, B) \subset \mathcal{A}(\Gamma, B)$. As we want to study how the spectra of H_B depend on B, we need a notion of a "collection" " $\cup_B \mathcal{A}(\Gamma, B)$ " of all these C^* -algebras in which each of H_B belongs to.

Let *B* be a magnetic flux class and Ω be its open neighborhood in $H^2(\Gamma, \mathbb{R}) \cong \mathbb{R}^{d(d-1)/2}$. Put $\theta : B \in \Omega \mapsto e^{\sqrt{-1}B(\cdot, \cdot)} \in H^2(\Gamma, \mathbb{R})$ and U^{Ω}_{α} are the formal unitary elements satisfying

$$U^{\Omega}_{\alpha}U^{\Omega}_{\beta} = \theta(\alpha,\beta)U^{\Omega}_{\alpha\beta},$$

$$a_{\alpha}U^{\Omega}_{\beta} = U^{\Omega}_{\beta}a_{\beta},$$

$$(U^{\Omega}_{\alpha})^{*} = (U^{\Omega}_{\alpha})^{-1} = U^{\Omega}_{\alpha^{-1}}$$

Put

$$\mathcal{P}_{\Omega}^{k} = \{ A = \sum a_{\alpha} U_{\alpha}^{\Omega} \text{ finite sum } | a_{\alpha} \in C^{k}(\Omega, \operatorname{End}(W)) \},\$$

and define the evaluation map $\rho_B : \mathcal{P}^k_{\Omega} \to \mathcal{P}^k_B$ by $U^{\Omega}_{\alpha} \mapsto U^B_{\alpha}$. The C^* -norm of \mathcal{P}^k_B is given as usual by

$$||A||_B = \sup_{\pi \in \operatorname{Rep}} ||\pi(A)||,$$

and let \mathcal{A}_{Ω} be the completion of \mathcal{P}_{Ω}^{k} with respect to

$$||A||_{\Omega} = \sup_{B \in \Omega} ||\rho_B(A)||_B.$$

We also define the trace $\tau : \mathcal{A}_{\Omega} \to \underset{5}{C(\Omega)}$ by $\tau(A) = \dim(W)^{-1} \operatorname{tr}_{W} a_{0}.$

The differencial structure of \mathcal{A}_{Ω} is endowed, for $A \in \mathcal{P}_{\Omega}^{\infty}$,

$$\partial_i A = \sum_{\alpha \in \Gamma} \sqrt{-1} \alpha_i a_\alpha U_\alpha \quad (i = 1, \dots, d),$$
$$\delta_{ij} A = \sum_{\alpha \in \Gamma} \frac{\partial a_\alpha}{\partial b_{ij}} U_\alpha, \quad (1 \le i < j \le d).$$

Here ∂ represents a derivation in space and δ that in the magnetic flux. We see that ∂_i is a *-derivation and

$$\delta_{ij}(*A) = *\delta_{ij}(A)$$

$$\delta_{ij}(AB) = (\delta_{ij}A)B + A(\delta_{ij}B) - \sqrt{-1}(\partial_i A \partial_j B - \partial_j A \partial_i B).$$

Thus it is reasonable to define the order of each is $\operatorname{ord}(\partial_i) = 1$, and $\operatorname{ord}(\delta_{ij}) = 2$. The space

$$\mathcal{C}^{l,n}(\mathcal{A}_{\Omega}) = \{ A \in \mathcal{A}_{\Omega} \mid \|\delta^{s}\partial^{r}(A)\| < \infty, 0 \le |s| \le l, 0 \le 2|s| + |r| \le n \},$$

is dense in \mathcal{A}_{Ω} and there exist a norm which makes it a Banach algebra.

5. LIPSCHTIZ CONTINUITY

Note that we don't use the fact X being an abelian cover (i.e. $\Gamma \cong \mathbb{Z}^d$) so far. Indeed, everything works well with a Γ -cover X of a finite graph X_0 where Γ is not necessarily abelian. Finally, from now on, the assumption $\Gamma \cong \mathbb{Z}^d$ is essential.

Let Ω be an open neighborhood of B_0 in $H^2(\Gamma, \mathbb{R})$ and we put $B' = B_0 + hB \in \Omega$. $(h \in (0, \epsilon))$. As we consider B as a skew-symmetric 2form of $\Gamma \otimes \mathbb{R}$, we take the orthogonal complement V of the null space of B in $\Gamma \otimes \mathbb{R}$ and write the orthogonal projection to V by $p : \Gamma \otimes \mathbb{R} \to V$. The Weyl representation (π_h, \mathcal{H}_w) of \mathcal{A}_{hB} on $\mathcal{H}_w \subset L^2(V, W)$ is given by

$$(\pi_h(U^B_\alpha)\varphi)(x) = e^{\sqrt{-1}B(x,\sqrt{h}\alpha)}\varphi(x+\sqrt{h}p(\alpha)) \quad (\alpha \in \Gamma, \varphi \in \mathcal{H}_w).$$

We also define a *-homomorphism $\mathcal{A}_{B'} \to \mathcal{A}_{B_0} \otimes \mathbb{B}(\mathcal{H}_w)$ by $U_{\alpha}^{B'} \to U_{\alpha}^{B_0} \otimes \pi_h(U_{\alpha}^B)$ and let \mathcal{A}' be the C^* subalgebra of $\mathcal{A}_{B_0} \otimes \mathbb{B}(\mathcal{H}_w)$ generated by $U_{\alpha}^{B_0} \otimes \pi_h(U_{\alpha}^B)$. Then it is isomorphic to $\mathcal{A}_{B'}$. We express $A = \sum a_{\alpha}U_{\alpha} \in \mathcal{A}_{B'}$ as an element of \mathcal{A}' through this isomorphism; Let

$$a(h,\xi) := \sum a_{\alpha}(B') e^{\sqrt{-1}B(\alpha,\xi)} e^{h|p(\alpha)|_{B}^{2}/2} U_{\alpha}^{B_{0}} \in \mathcal{A}_{B_{0}}.$$

and $T_{\xi}: \mathcal{H}_w \to \mathcal{H}_w$ be the integral operator with its kernel

$$t_{\xi}(x,y) = \pi^{-k} e^{\sqrt{-1}B(\xi,y-x)/2} e^{-|y-x|_B^2/4},$$

then

$$A(B') = (4\pi h)^{-k} \int_{V} a(h,\xi) \otimes T_{\frac{\xi}{\sqrt{h}}} d_B \xi.$$

By using this expression, we treat all A(B') together and reduce the problem to estimate of elements $a(h,\xi)$ in \mathcal{A}_{B_0} and obtain the following theorem.

Theorem 1. Let $H \in C^{1,d/2+2+\epsilon}(\mathcal{A}_{\Omega})$ be a self-adjoint element and denote its gap edges by E(B). If the gap width is positive at $B_0 \in \Omega$, then in a small neighborhood $U(B_0)$ of B_0 , E(B) is a Lipschitz function, namely, for $B_1, B_2 \in U(B_0)$,

$$|E(B_2) - E(B_1)| \le c(H) [\sup_{B \in U(B_0)} W^g(B)]^{-(d/2+4)} |B_2 - B_1|$$

holds.

References

- [AMS] J. E. Avron, P. H. M. van Mouche, B. Simon, On the measure of the spetrum for the almost Mathieu operator, Comm. Math. Phys.132(1990), 103-118.
- [Bed] E. Bédos, An introduction to 3D discrete magnetic Laplacians and noncommutative 3-tori, J. Geom. Phys.30(1999).
- [Be1] J. Bellissard, Lipschitz continuity of Gap Boundaries for Hofstadter-like Spectra, Comm. Math. Phys. 160(1994), 599-613.
- [Be2] J. Bellissard, Gap labelling theorem for Schrödinger operators, in "From Number Theory to Physics" edited by M. Waldschmidt et al, Springer-Verlag, 1992, 538-639.
- [CEY] M. .D. Choi, G. A. Elliott and N. Yui, Gauss polynomials and the rotation algebra, Inv. Math. 99, 225-246.
- [H] P. G. Harper, Single band motion of conduction electron in a uniform magnetic field, Proc. Phys. Soc. London A68(1955), 874-878.
- [HS] B. Helffer and J. Sjöstrand, Analyse semi-classique pour l'equation de Harper II, Bull. Soc. Math. France 117 Mémorie 40(1990).
- [HoSe] D. R. Hochschild and J. P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc.74(1953), 110-134.
- [Hof] D. G. Hofstadter, Energy levels and wave functions of Bloch electrons in rational or irrational magnetic field, Phys. Rev.B14(1976), 2239-2249.
- [K1] M. Kotani, A central limit theorem for magnetic transition operators on a crystal lattice, to appear in J. London Math. Soc.
- [Rie] M. A. Rieffel, C^{*}-algebras associated with irrational rotations, Pacific J. Math.95(1981), 415-419.
- [Sh] T. Shirai, The spectrum of infinite regular line graphs, Trans. Amer. Math. Soc. 352(2000), 115-132.
- [S] T. Sunada, A discrete analogue of periodic magnetic Schrödinger operator, Contemporary Math.173(1994), 283-299.

MATHEMATICAL INSTITUTE, FACULTY OF SCIENCES, TOHOKU UNIVERSITY, 980-8578, SENDAI, JAPAN

E-mail address: kotani@math.tohoku.ac.jp