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Abstract

In this report we present recent result on the existence and precise
decay estimates at infinity of solutions to the Bogomol’nyi system of
the static Einstein equations coupled with the Maxwell-Higgs fields
with translational symmetry in one direction. The equations model
cosmic strings(or superconducting strings) in equilibrium state. The
Higgs fields of our solutions, in particular, tend to the symmetric vac-
uum at infinity. The construction of our solution is by the perturbation
type of argument combined with the implicit function theorem.

1 Introduction

Let us consider the (3+1) dimensional Lorentzian manifold (M, gµν), where
gµν is a metric with signature given by (−, +, +, +). We denote gµν for the
inverse matrix of gµν . We raise and lower the tensor indices by gµν and gµν .
On this manifold let us introduce the Lagragian,

L =
1

4
gµαgνβFµνFαβ +

1

2
gµν(Dµφ)(Dνφ)∗ +

1

8
(|φ|2 − σ2)2, (1.1)

where φ is a cross section on a U(1)-line bundle, called Higgs field, A =
Aµdxµ is a (gauge) connection 1-form, called the Maxwell field, F = dA =
1
2
Fµνdxµ ∧ dxν with Fµν = ∂µAν − ∂νAµ is a (gauge) curvature 2-form, and
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D = d− iA is a (gauge) covariant derivative. We denote φ∗ as the complex
conjugation of φ. σ > 0 is called the symmetry breaking parameter. Let
Γρ

µν = 1
2
gρα(∂νgαµ + ∂µgαν − ∂αgµν) be the Christoffel symbol, representing

the Levi-Civita connection on (M, gµν), and let

Rµ
νρτ = ∂τΓ

µ
νρ − ∂ρΓ

µ
ντ + Γµ

ραΓα
τν − Γµ

ταΓα
τν

be the Riemann curvature tensor on the manifold. Let Rµν = Rα
µαν and R =

Rα
α be the Ricci tensor and the scalar curvature of the manifold respectively.

Let G > 0 be the gravitational constant. Then, the Einstein equations
coupled with the Maxwell-Higgs fields are

Rµν − 1

2
gµνR = 8πGTµν , (1.2)

where the energy-momentum tensor Tµν given by

Tµν = gαβFµαFνβ +
1

2
[(Dµφ)(Dνφ)∗ + (Dνφ)(Dµφ)∗]− gµνL, (1.3)

coupled with the matter equations,

1√
|g|Dµ(gµν

√
|g|Dνφ) =

1

2
(|φ|2 − σ2)φ, (1.4)

and
1√
|g|∂α(gµνgαβ

√
|g|Fνβ) =

i

2
gµν [φ(Dνφ)∗ − φ∗(Dνφ)], (1.5)

where we denoted g = det(gµν). We assume that our metric is static and
translational invatiant along a spatial direction, say along the x3 axis. More
precisely, we assume our metric is of the form

ds2 = gµνdxµdxν = −dt2 + dx2
3 + γijdxidxj,

where ∂tγij = ∂3γij = 0, andM = R2×M2. We also assume that our matter
fields Aµ, φ depend on x1, x2, the coordinates of M2, and Aµ = (0, A1, A2, 0).
We denote below A = (A1, A2). In this case it is known([17],[22]) that the
system (1.2)-(1.5) posess the self-dual equations,

Kγ = 8πGE , (1.6)

(Dj ± iεk
j Dk)φ = 0, (1.7)

εjkFjk ± (|φ|2 − σ2) = 0, (1.8)

where Kγ is the Gaussian curvature of (M2, γij), E = T00 is the energy
density, εjk is the Levi-Civita skew-symmtetric tensor with the normaliza-
tion ε12 =

√
γ, where γ = det(γij). The Bogomol’nyi system, (1.6)-(1.8)
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represents a model for cosmic strings(or superconducting strings) in equilib-
rium([11],[20]). We further assume that our reduced manifold, (M2, γij) is
conformally flat, namely there exists a function η such that

γij = eηδij. (1.9)

Following [21], we make a scale transform, x 7→ x
σ
, φ 7→ σφ,Aj 7→ σAj. Then,

the energy and the Gaussian curvature transform as E 7→ σ4E , Kγ 7→ σ2Kγ.
Then, following standard Jaffe-Taubes’ procedure[10], we represent

φ = exp

(
u

2
+ i

m∑
j=1

njArg(z − zj)

)
,

where the zero set of φ, Z(φ) = {zj}m
j=1 ⊂ C = R2 is prescribed together

with their multiplicities {nj}m
j=1. We can thus reduce further the system

(1.6)-(1.9) into the semilinear elliptic system for (u, η)

∆u = eη(eu − 1) + 4π
m∑

j=1

njδ(z − zj), (1.10)

∆(η + aeu) = aeη(eu − 1), (1.11)

where we set
a = 4πGσ2. (1.12)

The system (1.10)-(1.11) is our basic equations to solve in the following
sections. We want to solve (1.10)-(1.11) under the finite energy condition

∫

R2

Eeηdx < ∞,

∫

R2

Kγe
ηdx < ∞. (1.13)

Here we note that, in terms of u, η, E , Kγ and F12 have the representations,

Kγ = −1

2
e−η∆η = aE , F12 = −1

2
eη(eu − 1).

A solution pair (u, η) satisfying (1.10)-(1.11) generates a static finite energy
solution (φ,A, g) of (1.6)-(1.8), (and thus solutions of (1.2)-(1.5)) called a
multi-string solution. In particular, we consider the two types of solutions of
(1.10)-(1.13) distinguished by the boundary conditions for u at infinity:

u(x) → 0 as |x| → ∞, (1.14)

and
u(x) → −∞ as |x| → ∞. (1.15)

Physically, (1.14) implies that the Higgs field, φ(x) has the asymmetric vac-
uum( |φ(x)| = 1) at infinity, while (1.15) implies that the Higgs field satisfies
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the symmetric vacuum(|φ(x)| = 0) at infinity. Mathematical study of the
system (1.10)-(1.11) is extensively done in [7],[17],[22]. We also mention that
recently there are many mathematical studies on the similar type of equa-
tions arising from other vortex models(See [2-6],[12-16],[18] and, in particular
[21] for a comprehensive survey of the subject.). In [7] it is found that the
necessary condition for existence of solution of (1.10)-(1.13) is 0 < aN < 2,
and under the assumption 0 < aN < 1, general(nonradial) multi-string solu-
tions satisfying (1.14) are constructed in [22]. In this paper, we construct a
family of solution to (1.10)-(1.13) satisfying the condition (1.15) in the full
range 0 < aN < 2. Our method of construction is a variation of the per-
turbation type of argument, which has been developed in a series of papers
[2-4]. In order to formulate our main theorem we introduce some functions.
Given ε > 0, and δ ∈ C = R2, we define

ρI
ε,δ(z) :=

8
1
a ε2N+2

∏m
j=1 |z − zj|2nj

a
1
a (1 + |εz + δ|2) 2

a

, (1.16)

and

ρII
ε,δ(z) :=

8ε2

a(1 + |εz + δ|2)2
. (1.17)

where z = x1 + ix2. We also introduce the associated functions

ρ1(r) :=
8

1
a r2N

a
1
a (1 + r2)

2
a

, (1.18)

and

ρ2(r) :=
8

a(1 + r2)2
, (1.19)

where r = |z|. Below we set f(t) = (a + 1)ρ1(t)ρ2(t). Then, the function
w1(r) is defined by

w1(r) := ϕ0(r)

{∫ r

0

φf (s)− φf (1)

(1− s)2
ds +

φf (1)r

1− r

}
(1.20)

with

φf (r) :=

(
1 + r2

1− r2

)2
(1− r)2

r

∫ r

0

ϕ0(t)tf(t)dt,

and

ϕ0(r) :=
1− r2

1 + r2
,

where φf (1) and w1(1) are defined as limits of φf (r) and w1(r) as r → 1. We
also define

w2 := aw1 − aρ1. (1.21)
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2 The Main Theorem

The following is our main result, the proof of which is in [1].

Theorem 2.1 Let {nj}m
j=1 ⊂ N and {zj}m

j=1 ∈ R2 be given. We set N =∑m
j=1 nj. Suppose 0 < aN < 2. Then, there exists a constant ε1 > 0

such that for any ε ∈ (0, ε1) there exists a family of solutions to (1.6)-(1.8),
(φε, A

ε, γε
ij) satisfying the finite energy condition (1.13). Moreover, the solu-

tions we constructed have the following properties:

(i) The Higgs fields φε has zeros at {zj}m
j=1 with multiplicities {nj}m

j=1 re-
spectively.

(ii) The functions φε, γ
ε
ij have the representations

φε(z) = exp

(
uε

2
+ i

m∑
j=1

njArg(z − zj)

)
, (2.22)

and
γε

ij = eηεδij, i, j = 1, 2 (2.23)

with
uε(z) = ln ρI

ε,δ∗ε (z) + ε2w1(ε|z|) + ε2v∗ε(εz), (2.24)

and
ηε(z) = ln ρII

ε,δ∗ε (z) + ε2w2(ε|z|) + ε2ξ∗ε (εz), (2.25)

where δ∗ε → 0 as ε → 0, and

w1(ε|z|) = −κ1 ln |z|+ O(1), (2.26)

w2(ε|z|) = −κ2 ln |z|+ O(1) (2.27)

as |z| → ∞ with

κ1 :=
(a + 1)81+ 1

a (1− aN)N !

a2+ 1
a

∏2
k=1−N

(
2
a

+ k
) , (2.28)

and

κ2 :=
(a + 1)81+ 1

a (1− aN)N !

a1+ 1
a

∏2
k=1−N

(
2
a

+ k
) . (2.29)

The functions v∗ε and ξ∗ε in (1.24), (1.25) satisfy

sup
z∈R2

|v∗ε(εz)|+ |ξ∗ε (εz)|
ln(|z|+ 1)

≤ o(1) as ε → 0. (2.30)
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(iii) There exist constants C1 = C1(G, σ), C2 = C2(G, σ) and functions
β1(ε), β2(ε) defined on a small neighborhood of ε = 0 such that

ln |φε(z)|2 = uε(z) =

[
2N − 4

a
− β1(ε)

]
ln |z|+ o(ln |z|)

as |z| → ∞. (2.31)

|D1φε|2+ |D2φε|2 ≤ C1

|z| 4a−2N+β1(ε)
+o

(
1

|z| 4a−2N+β1(ε)

)
as |z| → ∞,

(2.32)
ηε(z) = [−4− β2(ε)] ln |z|+ o(ln |z|) as |z| → ∞. (2.33)

The Gaussian curvature has the decaying property,

∣∣∣Kε
γ(x)− a

2

∣∣∣ = O(euε−ηε) as |z| → ∞, (2.34)

and determined by comparison of decays between uε and ηε as described
above. In the above the functions β1(ε), β2(ε) satisfy

lim
ε→0

β1(ε)

ε2
= κ1, lim

ε→0

β2(ε)

ε2
= κ2.

(iv) The corresponding magnetic flux, total gravitational curvature, and the
energy of the matter part are given by

∫

R2

F ε
12dx = 4π

(
N − 1

a

)
+ πκ1ε

2 + o(ε2), (2.35)

∫

R2

Kε
γe

ηεdx = 4π + πκ2ε
2 + o(ε2), (2.36)

and ∫

R2

Eeηεdx =
1

G

[
1 +

κ2

4
ε2 + o(ε2)

]
(2.37)

as ε → 0 respectively.

Remarks:

(i) We note κ1, κ2 > 0 for 0 < aN < 1, and κ1, κ2 < 0 for 1 < aN <
2. Thus aN = 1 corresponds to the “critical” case similarly to the
solutions constructed in [7],[22].

(ii) Even in the range 0 < aN < 1 our multi-string solutions are different
from those constructed in [22], since our solution satisfy the boundary
condition (1.15), not (1.14).
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(iii) We compare our decay estimates with the well-known results on the
topological solutions in [19]. From (1.10) and (1.11) we find that

∆(au− η − aeu − 2a
m∑

j=1

nj ln |z − zj|) = 0.

Thus, for both the topological and the nontopological solutions we can
set the harmonic function h(z) = au−η−aeu−2a

∑m
j=1 nj ln |z−zj| =

Constant. Hence,

lim
|z|→∞

η(z)

ln |z| = −2aN + a lim
|z|→∞

u(z)

ln |z| . (2.38)

The formula (1.38) holds for both the topological and the nontopolog-

ical solutions. For the topological solutions, we have lim|z|→∞
u(z)
ln |z| = 0,

and

lim
|z|→∞

η(z)

ln |z| = −2aN,

which holds for general topological solutions. Namely, for any topolog-
ical solution there should be obvious dependence of the decay of η on
the total string number N . For the nontopological solutions, in par-
ticular, for our family of solutions (uε, ηε) constructed in Theorem 1.1,
we derive from (1.31)

lim
|z|→∞

uε(z)

ln |z| = 2N − 4

a
− κ1ε

2 + o(ε2),

Hence,

lim
|z|→∞

ηε(z)

ln |z| = −4− aκ1ε
2 + o(ε2) = −4− κ2ε

2 + o(ε2),

and, we obtain limε→0 lim|z|→∞
ηε(z)
ln |z| = −4, which has no dependence

on N . This is not surprising, since, as will be clear in the next section,
our solution ηε is a perturbation of ln ρ2, which is smooth everywhere,
and does not have any dependence on the vortices.
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