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Research Directions in Nuclear Physics:
Distance Scales and Complexity

heavy
nuclei

. guarks, "

guark-gluon  nucleon few-body systems many-body systems
plasma QCD free NN force effective NN force
QCD



Research Directions in Nuclear Physics:
The “Tools of the Trade”

Rare Isotope Accelerators

Electron and Hadron Accelerators
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Study Quantum Chromo Dynamics Using
Relativistic Heavy lon Collisions

* Color charge of gluons = they interact among themselves
- theory is non-abelian
- curious properties at long distance, including confinement

r—>"
short distance: QCD potential at
force is weak (probe w/ high Q?, ‘ b \
calculate with perturbation theory) |
large distance: force is strong (probe w/ low Q?Z,
calculations must be non-perturbative)

High temperature: force becomes screened by
produced color-charges (gets weak)



The Quark Gluon Plasma

Quark-Gluon A

Plasma Early universe RHIC

170 MeV Quark-gluon plasma

Hadron Gas

SPS
AGS

Hadron
gas Color

superconductor

Temperature
Vacuum

}

Nuclear T Baryon density

matter ~5-10
nuclear density

The QCD phase transition:
Critical temperature: 150 — 200 MeV (ug = 0)
Critical density: % - 2 Baryons/fm?3 (T =0)
Critical energy density: ~1 GeV/fm?3



A Mini-Bang:
Nuclear matter at extreme temperatures and density

Colliding nuclei at 100 + 100 GeV/nucleon

Freeze-out —
emission of hadrons

i

Hot and dense phase -
quark-gluon plasma and hadron gas

i

Formation phase -
parton scattering

Using heavy ions to excite the QCD vacuum on a large scale



Central Au-Au collision: A Mini-Bang?

Charged particle multiplicity density per
interacting nucleon pair
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Initial energy density >10 GeV/fm? over a volume of ~1000 fm?




Pressure: a Barometer Called “Elliptic Flow”

Origin: spatial anisotropy of the system when created, followed by
multiple scattering of particles in the evolving syste
spatial anisotropy — momentum anisotropy

v,: 2"d harmonic Fourier
coefficient in azimuthal
distribution of particles with
respect to the reaction

plane
y
5 *—\._o o,_,__.—a\
X 200 %
Almond shdpe = o

overlap region

In coordinate
space c (2 =x%) v, =(c0s2¢) ¢ = atan—~
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Vo Predicted by Hydrodynamics
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_ﬂ I] H Hydro. Calculationé
i

0.08—

[I Huovinen, 8

0.06— Y u P. Kolb, -
G_M;_ | U. Heinz _;
o  STAR . . i
; PRL 86 (2001) 402 :

Hydro can reproduce
magnitude of elliptic flow for

(p, p), BUT: must add QGP to —_s}

hadronic Equation of State!!

Similar conclusion reached by
Ko, Kapusta, Bleicher, others...

e see large pressure buildup

e anisotropy = the buildup
happens fast

eV, reproduced by hydro =
early equilibration !

Kolb, et al
101 ¢ + STAR -
o) hydro
Qe — resgnance gdas
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Study Systems with Increasing Complexity to
Understand:. p+p, “p”+A, then A+A Collisions

E*d o/dp’ (mb-GeV*c?)
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start with pQCD and
“hard” pp collisions:
It works!

Have a handle on initial NN
Interactions by scattering of g, g
Inside N

We also need:

/;/N(X,Qz) Parton distribution functions
D, , (Z,() Fragmentation functions



p+p —jet+jet (STAR 200 GeV)

schematic view of jet production
hadrons / leading
f// particle
q : >_
- q

7N
leading particle

hadrons

Hard Scattering Leads to Jets
Use Them to Probe the Medium

* Observed via fast leading particles and
their angular correlations

* In the presence of a color-deconfined
medium, the partons interact strongly
(~GeV/fm), losing much of their energy
via gluon Bremsstrahlung.

seV/inucleon)



Jets and two-particle azimuthal distributions
p+p — dijet

e trigger: highest p; track, p->4 GeV/c
 A¢ distribution: 2 GeV/c<p <piigger
e normalize to number of triggers

Phys Rev Lett 90, 082302
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“Opposite” Jet Suppressed
As We Go from p-p to d-Au to Au-Au

S 0o * Au+Au central N
S | e d+Au central STAR |
Z : — p+p | Recoll jet peak:
© L s p — p

0.1 -~ Central d — Au
'S ] .- Central Au - Au
z |

0%

 Need parton interaction cross sections 50X pQCD values to explain the
guenching!

« The data indicate a hot, dense medium of final state particles
characterized by strong collective interactions at very high energy
densities.



Medium properties

« Extract by constraining QCD-inspired models
with measured jet suppression and v,

 Find:
Energy loss <dE/dz> (GeV/fim) |7-10 0.5 in cold matter
Energy density (GeV/fm3) 14-20 >5.5 from E; data
dN(gluon)/dy ~1000 200-300 at SPS
T (MeV) 380-400 | must measure!
Equilibration time t, (fm/c) 0.6 Zgr”e‘;g cascade
Medium lifetime 157 (fm/cC) 6-7

A Quark-Gluon Liquid???

(values from Vitev, et al; others consistent)
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Atomic Physics versus Quark Physics

Molecules as bound Nuclei as bound states
states of atoms of nucleons
molecules
A
7 \
Atoms as bound states Nucleons as bound states Hadronic
of electrons and a nucleus of quarks and gluons :
“atoms” Physics
A
7
Quantum Mechanics Quantum Chromo
& Coulomb’s Law Dynamics
Atomic Physics Nuclear and Particle Physics

1930’s Today



The Proton and Neutron are
the “Hydrogen Atoms” of QCD

What we “see” changes with spatial resolution

>1 fm 0.1 —1fm <0.1fm
Nucleons Constituent quarks  “bare” quarks
and glue and glue

S=1/2




Nucleon and Pion Form Factors

 Fundamental ingredients in “Classical”’ nuclear theory
» A testing ground for theories constructing nucleons from quarks

and gluons.
- spatial distribution of charge, magnetization

« Experimental insights into nucleon structure from the flavor
decomposition of the nucleon form factors

PRECISION
GP GI GP? — Ge Gg G¢
G, G} G G, Gy Gi

« Additional insights from the measurement of the form factors

of nucleons embedded in the nuclear medium
- implications for binding, equation of state, EMC...

- precursor to QGP



The Proton’s Electric Form Factor:
Critical Data for Understanding Proton Structure

1.5 | | | AI | |
P ;5 ]

o . | Previously-available data
w§ COrREHI I | 4 * wasn'taccurate enough to
< Ry Pl | distinguish between
<h 14| ~ 7] theories of the proton
3 o |

0.5 [ -'\ ]

| A SLAC 199 1 -
A World Data
0.0 ! | | |

0.0 2.0 4.0 6.0



MGEp/GMp

G P/G,, as via (e,e’p): Critical New Data

1.5

0.5

0.0

— 7

—
p—
> ]
|

JLab 1998

JLab 2000
SLAC 1993
World Data

The combination of high
intensity e beams and proton
polarimetry has dramatically
Improved our knowledge of this
fundamental system and
revived theoretical interest in
this important problem
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The Neutron’s Charge Distribution Provides

Q

n

n

=0 Butp, (N#0

or

)

udd

n - Scattering => G. (q=0) ©

0.1

0.08

0.06

0.04

Further Insights into Hadron Structure

Previously available data
limited to modest Q?, just
barely sensitive to details
beyond the RMS radius

[0 MIT-Bates: 2H(e,e'n)

A Mainz A3: H(e,e’n)

¢ NIKHEF: 2H(e,e'n)

- = = Galster
1 I L I 1 I 1 I 1 I L I L I 1 | 1
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The Neutron’s Charge Distribution Provides
Further Insights into Hadron Structure

Q, =0 Butp,(N#0 New data clearly
determines the basic

n
structure of the neutron’s
charge distribution
h\‘ or
% T~ T ~ T ©~ T ~ T T ©~ T "~ T_"T°'
P K T 0.1 W JLab E93-038: [ MIT-Bates: 2H(e,e'n)
. i H(e,e'n) ® JLab E93-026: 2H(e,e'n)
O Mainz A1: 3ﬁe(é’,e’n)
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n udd ¢ NIKHEF: 2H(e,e'n)
c 0.06 - A Schiavilla & Sick: G, ]
. L
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0.8

0.6

u,GR/ Gf

0.4

0.2

u.GE/ Gy

Unraveling Nucleon Structure Through a
Consistent Analysis of both GgP and G¢"

(Polarization Experiments only)

®
SNt
.

O MIT-Bates: p(e,e’p) [22]
O Mainz A1: p(e,e’p) [24]

@ JLab Hall A: p(e,e’p) [23,25]
| | |

Explaining both G¢P and
G¢" Consistently is Proving
to be a Challenge

Light-cone diquark

1-gluon exchange light front
w/ constituent quark form factors

Light-front (pointlike constituents)
VMD and pQCD
Chiral soliton

Pointlike constituent quark
and boson exchange



The Search for “Missing States” In
the Quark Model Classification of N*

Particle Data Group
.- :
(563)(7039 (203
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0 .I"uz ............................... st -D s :

Ohw 1he 2hw 3ho N
(1135 MeV) (1545 MeV) (1839 MeV) (2130 MeV) (Mass)

Roper Py ,(1440)



“Missing” Resonances?

Problem: Symmetric Constituent Quark Model predicts many
more states than have been observed (in N scattering)

Two possible solutions:

1. Di-quark model @\.

 fewer degrees-of-freedom |CI2C|>
e open question: mechanism for g2 formation?

2. Not all states have been found

* Possible reason: decoupled from the tN-channel
* Model calculations indicate that the missing states
couple to Nzt (Am, Np), No, KY

v coupling is not suppressed, so electromagnetic excitation is an ideal probe
to address this question



Events
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CLAS: ep > epX, E=4GeV

W(GeV)
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CLAS Coveragefor ep—>e’ X E=4GeV

N(1520)

e | N1680)

A(1232 . .
| N(940) " ) missing states
0 - > 4 de s 20 24 2.
1 1.5 ZW(GGV) 2.5




CLAS Resonances in y*p — pr*n

30
Analysis performed — |
by Genova-Moscoa 3,5 [
collaboration ©

20

step #1.:

use the best

information 15
presently available [
10 [
I'nze from PDG
FNy AO/SQTM | 5[
extra strength
0 Lo

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1



Attempts to fit observed extra strength
CLAS 50

o
. Zas [
Analysis step #2: 5 Q* = 0.65 GeV’

- vary parameters 20 |

of known D, 5

or ;

. 15

- introduce new P, -

10 [

P [

13 5 [

------- D,5(1700) '
0 L. | | | | | |

1.4 15 1.6 1.7 1.8 19 2 21
W(GeV)



New Resonances are also Seen with Real Photons
in yp » pn'm

ﬂ_i* =1 o =
=g M=z5) A" n (=1)

%-: %Jf/PB( 1600)?!

MR 1199

5 4 “}} %

= - %

S :ﬁﬁf . ;{"]".:E%* Iﬁh {.H* L
1.4 1.6 W1§Uvm?2 2.2 2.4

.#_x| Jkg’mh%] oN (=1 s=3)

‘é :1: | ]l% { P,,(1720)?!

= H“ }ﬁ : }Mﬂl

= e +

R R R P

1 M |
1.6 18 ’2 2.2 2.4
W GeVic”

*Sample results from RPI-Jlab

*Preliminary (intriguing!) results
Peaks clearly seen
P,;Am decays presently

poorly understood
P,;Ar, p N decays of
great interest
*No 1sospin separation



In Strangeness Production in the Resonance Region

do/dcos(0g") (ub)

0

S e Guidol/Loget,/VdH
S @ CLAS (03) KAON-—MAID
A SAPHIR (98) cos0=+0.9  ====- Janssen B
L L 1 L L L

® CLAS (03)
A SAPHIR (98) cos@=+0.50
1 1 1

L "I_'."l I 1 I L I L I
' cos(0¢") = —0.55 _

® CLAS (03)

A] SAPHIR (Isaa) cose=l—0.50 | I

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

W (GeV)

® Small sample of data

covering the full kinematic
range in energy and
angles for K*A and K*%,
iIncluding recoill
polarization

Data indicate significant
resonance contributions,
Interfering with each other
and with non-resonant
amplitudes.

Extraction of resonance
Parameters requires a large
effort in partial wave analysis
and reaction theory.



and In ® Production

*0Old data only showed forward
angle peaking (Regge)

*PDG lists no N*— wp decays

Strong signal with e, y beam

*Vector particle provides
interesting observables with
polarized beam/target

*Calculations from Y. Oh- ‘good’
representation of t-chan+tres.

*Results preliminary- strong

resonance contribution, but no
single signature for a single state

lwo/srl

do /dt;

L W=1,76 GeV
C E.=1.175 GeV

i s o s SN PO

W=1.81 GeV
E,=1.275 GeV

r-llllljlll

1.84 GeV
1.325 GeV

’IIIIIIIIL I

" W=1.91 GeV
- E,=1.475 GeV

W=2.01 GeV
E,=1.675 GeV




And there are NEW Mysteries: the “Pentaquark”
SPRING-8: YD - K(K*X) (p) CLAS: yD - KpK*(n)

| | 1T 11 | R | | 35 C N. =43
- . - - 6=
- — | - - A
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e . 30 F
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= 1| Bk \
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B -r.-' _ 5 ? -------------
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Proposed by Diakonov et al in a Chiral Soliton Model

D. Diakonov, V. Petrov, M. Polyakov, Z.Phys.A359, 305 (1997)

uudds

/?*(1530)
udd (uu + ss) N(1710) uud(dd +s5)

dds(uu + ss) / \/ \ ¥(1890)uus(dd + ss)
=(2070)

ddssu dss(uu+dd) uss(uu+dd) uussd




Pentaquarks — two model descriptions

Chiral soliton model: (Diakonov, Quark description (Jaffe, Wilczek)
Petrov, Polyakov)

Pentaquark comes out (ud)
naturally from these models

as they represent rotational
excitations of the soliton
[rigid core (g?) surrounded
by meson fields (qq)] (ud)

Soliton:

(simplified) L=1, one unit of orbital
angular momentum needed
to get J=Y2*as in ySM

Meson Lattice QCD = J* = 1/2

fields




Tantalizing Evidence from Many Laboratories
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Planned Experiments Should Resolve the Issues Definitively



Atomic Physics versus Quark Physics

Molecules as bound Nuclei as bound states
states of atoms of nucleons
molecules
A
7 \
Atoms as bound states Nucleons as bound states Hadronic
of electrons and a nucleus of quarks and gluons _
atoms Physics
A
7
Quantum Mechanics Quantum Chromo
& Coulomb’s Law Dynamics
Atomic Physics Nuclear and Particle Physics

1930’s Today



5. At What Distance and Energy Scale Does the
Underlying Quark and Gluon Structure of
Nuclear Matter Become Evident?

We begin with ‘ab initio’ (*exact”) Calculations of the structure of few
body nuclei, in which we assume:

* Nucleus has A nucleons interacting via force described by Vy
» Vy fit to N-N phase shifts
« Exchange currents and leading relativistic corrections in Vy, and nucleus

We test these calculations via electromagnetic interaction studies of few-body
systems where precise, directly interpretable experiments can be compared
with exact calculations

The goal is to determine the limits of the meson-nucleon description and to infer
where a QCD-based description becomes substantially more straightforward

Push precision, A to identify limits and answer the question

Deuteron:
A, B, t,, form factors

photodisintegration (Halls C and A, and now CLAS)
Induced polarization in photodisintegration
3He form factors to high Q?



Two Views of Deuteron Structure

n

T Two Nucleons interacting

p via the (pion-mediated)

NN force
) qgi?‘ ;i;s‘& jg;q:;“"—v q

TNT D }dﬁf“. g Two multi-quark systems
ol . s e g interacting via the residue

Rl b e V. O of the (gluon-mediated)

e, “e%_qﬁ-,-ﬁ QCD color force



JLab Data Reveals the Size and

previous data

+  HallA
101 = HallC
- MMD, S2, D
1024} - MMD, 0, D
-- Forest and Schiavilla, 1A
108 \ 7 Forest and Schiavilla, |A+pair |
-4 |
N A(Q?)
1054
106
1074
108+
10° T T =
0 2 4 6
Q? (GeV?)
1.0
0.5
0.0
0.5 % E aes 1954
1.0- e
15, TSR
0.0 0.5 1.0 1.5
QGeV?)

2.0

. Deuteron's Intrinsic Shape

101 -
previous data
— MMD, S2, D
102+ == MMD, 0, D =

---- Forest and Schiavilla, 1A
A Hall A, Preliminary

105 »
B(X)
107~

108

109

Combined Data —

The nucleon-bas
description work
<0.5fm

Shape of the Deuteron

For elastic e-d scattering:

d
%:GM [A+Btan2%]

AQ*)=G2+51°G2 +21G
B(Q*) =%1(1+7)G?

e 3rd observable needed
to separate G, and Gg,

— tensor polarization t

20




s'do /dt (kb GeV%)

JLab d(y,p) Data ldentified the Transition
to the Quark-Gluon Description

2 g T T T T
) 5 *  Jlab E96-003
(§ Conventional 4  JLab E89—012 90° T
s o SLAC NET7
11 Nuclear Theory 1 §/u¢ nes ]
;A el (0] Mainz

Deuteron Photodisintegration
probes momenta well beyond those
accessible in (e,e’)

(at 90°, E=1 GeV < Q%= 4 GeV?/c?)

Conventional nuclear theory unable to
reproduce the data above ~1 GeV

Scaling behavior (do/dt oc s711) sets in at a
consistent t =—1.37 (GeV/c)? (see T)

— seeing underlying quark-gluon
description for scales below ~0.1fm

Pa Pc

Ps Pp
dofdt ~ (8, )/s"2

Where n=n, +ng+ng+np
S=(Pa*+Pg)? t=(Pa-Pc)?
vd > pn < n=13



Exploring the Transition Region: CLAS g2

Quark Gluon String Model

» A microscopic theory for the Regge
phenomenology.

* Non perturbative approach
(V.Grishina et al Eur. Phys. Jour.A. 10 (2001),
355)

 Production in the intermediate states
of a color string leading to

factorization of amplitudes

-

» tchannel: quark-gluon string
(3 valence g + g’s)
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do/d0 (nb/sterad)

Exploring the Transition Region: CLAS g2
(cont.)
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Understanding the N-N Force
In terms of mesons and nucleons:
T o
EEEg = b + RO I IR e + bR+ + bid o+
S B S
N N N N N N N N N N N N
— ~ d — —
— One Pion __ Two Pion One rho One omega
4 Exchange Exchange 777 * Exchanga+ """ * Exchange *

+ Very Short Range Potential
(Treated Phenomenologically)

Or in terms of quarks and gluons:

N N N N

V. = +  Diquark || X f Diquark




Hypernuclel Provide Essential Clues

For the N-N System:

n s
L] = pod + [+ [ ]+ + bR+ + b+
]'E L” I TTTTT]
N N N N N N N N N N N N
\_Y__J \ ~ J L_Y_J l_T_J
— OnePion , TwoPion One rho One omega
v Exchange Exchange "~~~ 777 +Exchanga+ """ +Exchange L o
+ Very Short Range Potential
(Treated Phenomenologically)
For the A-N System:
T o
II — “J:E" + :::"::‘ + T + __________ + -Ru + R -l- u{:::- + ______
J'E h” I TTTIL
A N A N A N A N A N A N
\_Y__I \ J \__Y_J \_‘._J
— OnePion . TwoPion One rho One omega
v Exchange Exchange @ ~~~777 +Exchange+ """ +Exchange R

+ Very Short Range Potential
(Treated Phenomenologically)



Hypernuclel Provide Essential Clues

For the N-N System:

m oves
L1 = poed + [=]+ |2+ + PR+ + fed
i) IR St
N N N N N N N N N N N N
—— ~ J —— ——
— One Pion __ Two Pion One rho One omega
= + o + + + +
/ Exchange Exchange Exchange Exchange =

+ Very Short Range Potential
(Treated Phenomenologically)

For the A-N System: Long Range Terms Suppressed

T .
=1 = PR+ [ + ’“' F oo + I+ + o] QY Isospin)
S B L
A N A N A N A N A N A N
\_Y.—J A\ y, \ } \ )

h
-0 on , Two Pion (o] ( One omega
= + + + +
v E}{g |+ woPlon 4 Ex A +Qneomega , .

+ Very Short Range Potential
(Treated Phenomenologically)



AN Spin-Orbit Force  BNLES30

MeV
f rom 3.04EL_ 2:::;:
vy Rays of A 2 ‘
Hypernuclei S
Akikawa et al., PRL 88 (2002) 082501 8Be  “Be 1 spirorbit force
(S4)
40F < 435 keV

Counts / 5 keV

n—. PR NN T TR TS T RN W TR T T, WO I, PR N 1
2800 2900 3000 3 Iﬂﬂ 37{]{} 3300
Ey (keV)
Spin-orbit forces  exp./ meson quark

[I,nSa] S, -0.01  -0.15 0.0
[lLinSy] Sy -045 -0.25  -0.4 (Mev)

Quark picture explains spin-orbit force well.



DEEP CONNECTIONS:
QUARKS & THE COSMOS | varkenersy
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Adapted from M.S. Turner and R. Orbach




do/dQ (cm?/sr)
. = S = S

._.

=
5
4

._.

<
Lo
>

107

(e,e) = Nuclear Charge Distributions

B 208ph (e, e)
%
%g ---- Mean Field
= Theory

= Experiment

q (fm™)

Correlations??

r,(7) (e.fm™)

Experiment

Mean Field Theory

r (fm)

In ‘70s large data set was acquired on elastic electron scattering (mainly at Saclay)
over large Q2-range and for variety of nuclei

“Model-independent” analysis of these data provided accurate results on charge
distribution for comparison with the best available theory: Mean-Field Density-
Dependent Hartree-Fock



S [(Gev/c)-3MeV-1] =

[ 3s12

250 -

200 -

150 -

100 -

(e,e’p) = Nucleon Momentum
Distributions, Shell-by-Shell

208Pb(e,e'p) 207Tl

3zt
0.35 MeV

1
1.35 MeV

}
t

| st
It 1.67MeV

T2t
347 MeV

S
208Pb(e,e'p) 207T1

200 < py, < 240 MeV/c

Ex [MeV] =

) [(GeVvic)?]

eff
m

p(p

pm: Ee_Ee'_ p:q_p
Em :a)_Tp _TA—l — Esep + Eexc

208Pb(e,e‘p)2O7Tl

10°
P A 102
10
A .

108

' 10710

0 200 400 0 200 400
pe" [MeVic] ——»



“Impurities” Solve the Problem:

The distinguishability of the hyperon permits us
to probe deeply-bound shells in nuclel

Experimentally
accessible

HYPERON

Experimentally
inaccessible

NUCLEQON

Possible single-particle orbitals for nucleons and
for a hyperon. The nucleon orbitals are occupied up
to the Fermi surface, while the hyperon orbitals are

unoccupied.

T. Yamazaki

Access deeply bound nuclear states



“Impurities” Solve the Problem:

The distinguishability of the hyperon permits us
to probe deeply-bound shells in nuclel

Well-confined
quark cluster = . @ u-q uark O d'q uark @ S-CIUEI'k
— | | Experimentally
Deconfined accessible
Experimentally == quark cluster 7
: 7

inaccessible 1
HYPEROMN

NUCLEON ¢ -

Possible single-particle orbitals for nucleons and p p n n
for a hyperon. The nucleon orbitals are occupied up

to the Fermi surface, while the hyperon orbitals are

unoccupied.

T. Yamazaki _ _
and provide the opportunity

to probe the quark structure
of nuclear systems in
new and different ways.

Access deeply bound nuclear states



A Single Particle Potential

89Y(TC+, K+)89AY

139La(7c+,K+)139ALa 208Pb(TC+,K+)208APb |
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Hotchi et al., PRC 64 (2001) 044302

Textbook example of

Single-particle orbits
in a nucleus

B, (MeV) v

. B (Me
KEK E140a Hasegawa et. al., PRC 53 (1996)12f0

A Single particle states

= A-nuclear potential
depth = - 30 MeV

= Van< Vi



Expected Counts / 100 keV / 100h

Anticipated Hypernuclear Spectra

(New JLab Facility developed by O. Hashimoto et al)
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« Complements Hyperball for states that don’t y decay
« Complements & production with respect to spin, parity, and
momentum transfer

With these new tools, the next generation of hypernuclear
studies is now underway, with great promise for the future



New Facilities Providing Intense Beams of Rare
(Radioactive) Isotopes will Greatly Expand our
Understanding of Nucleli and Nucleosynthesis

Nuclear Landscape
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New Facilities Providing Intense Beams of Rare
(Radioactive) Isotopes will Greatly Expand our
Understanding of Nuclel and Nucleosynthesis

RIA intensities (nuc/s)
m >10%2o 102
@ 1010 m 102
@ 108 m 10°

>

protons

GSI, RIA, RIBF, ...

] |

—p Neutrons



For Example: How Were the Nucleil Created?
The Nuclear Microphysics of the Universe

X-ray burst (RXTE) RIA intensities (nuc/s)
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Relative log ¢

r-process in the Early Universe
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Three different stars born
In early universe
(measured by HST and
Keck) match solar element
distributions.

The identical pattern implies a unique source, fixed by nuclear

structure and forces.

Rare Isotope Accelerator studies along r-process path will lead to

Its identification!



Rapid Neutron Capture Process (r-process)

How were the heavy elements from iron to uranium made? Two possibilities...
Merging Neutron Stars Supernova shock

8 100 l_/ ,I
s gl “‘/ )
Elo'l !"" 1 ' . " ,"v' C : ~
] : 2 pas™
3 PR s
©__2
10 — ETFSIQ (shell quenching)
é; —— ETFSI1 (no shell quenching)
%10_32 d solar
= - Pfeiffer & Kratz, Mainz 3
10-4 I R R R N R N

180 200 220

Question: Is this difference due to shell quenching for neutron-
rich nuclei, or to a problem with the astrophysical model?




Rare Isotope Accelerators Provide
a Laboratory for Neutron Star Science

X-ray bursts, super-bursts, and the fate of matter rp- process
at extreme gravitational conditions

@ Companion star
rp-process
Neutron star
- e capture
=
g Neutron
evaporation

Neutron Drip Line 3
Accretion disk




Summary

There Has Been Major Progress in Nuclear Physics,
and There Are Fascinating Prospects for the Future:

« Deconfined Quark Matter in Relativistic Heavy lon Collisions, with
Surprises: (a liquid instead of a plasma?)

* Insights into the Physics of Hadrons and their Structure, with
Fascinating Surprises, Are Emerging from Electron Facilities
(we’'re still learning about the fundamental degrees of freedom!)

» Exciting Prospects in Traditional Nuclear Physics Research
Provided by Evolving New Capalbilities:
- Strangeness “impurities”
- Intense beams of rare ion species to extend our understanding of
nuclear matter and the formation of the elements

 The Large Investments in New Facilities and Our Evolving
Understanding of QCD as the Theoretical Underpinning for
Strongly Interacting Matter Have Provided the Foundations for this
Progress
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