Study of Resonance States in Unstable Nuclei Using Low-Energy Radioactive Nuclear Beams

T. Teranishi Kyushu University, Japan

Proton resonance scattering on unstable nuclei at energies below 5 MeV/nucleon

Introduction

Experimental study of unstable nuclei

Developments of secondary beams of radioactive ions

Exotic nuclear structure (Neutron halo e.g. ¹¹LI)

Change of magic numbers in a neutron-rich region (e.g. disappearance of the N=20 magic number)

Nuclear astrophysics

Unstable nuclei play important roles in explosive nucleosynthesis under high-temperature & high-density conditions (supernova, nova & X-ray burst etc.)

Neutron-rich nuclei Proton-rich nuclei Mass, lifetime, (n,γ) reaction rates r-process (p, γ) reaction rates rp-process

Low-energy Radioactive Nuclear Beams at E < 10 MeV/nucleon

Recently, techniques of producing low-energy radioactive nuclear beams have been developed largely at many facilities

Low energy nuclear reactions of unstable nuclei <u>Nuclear spectroscopy</u> Nuclear Astrophysics

Applied physics

Implantation of radioactive ions into materials (material science, biology...)

Production of Low-Energy Radioactive Beams

high-energy beams (>~100 MeV/u) (also useful for low-energy beams)

CNS Low-energy In-flight Beam Line in RIKEN Facility

Center for Nuclear Study (CNS), University of Tokyo

RIKEN Accelerator Research Facility

CNS Radioactive-Ion Beam separator (CRIB)

CRIB (CNS low-energy Radioactive-Ion Beam) separator

Production reactions for low-energy in-flight method

Heavy-Ion beam + light-ion target

Proton-rich nuclei: (p,n), (p,d), (d,n), (d,t), $(^{3}He,n)$ Neutron-rich nuclei: (d,p), $(d,^{3}He)$

Example: ¹⁴O beam

- Reaction: $p({}^{14}N, {}^{14}O)n$ (p,n) reaction in inverse kinematics $\sigma \sim 8 \text{ mb}$
- Primary beam ¹⁴N(6+)

Intensity: 500 pnA (3 × 10¹² particles/s) Energy: 8.4 A MeV

 Gas target (Proton target): Hydrogen-gas 1 atm. & 2-cm thick (0.2 mg/cm²)

confined in a cell with two Havar foils

¹⁴O secondary beam intensity: 10⁶ particles/s

Study of unbound states in unstable nuclei

Proton/Neutron Separation energy $E_x \sim 10 \text{ MeV}$

 $^{A-1}Z + n$

 $^{A-1}(Z-1) + p$

^AZ Stable nucleus $\frac{E_x \sim < 1 \text{ MeV}}{A^{-1}Z + n}$

 $^{A-1}(Z-1) + p$

AZ

Neutron-rich nucleus near the drip line

Almost no bound excited states \rightarrow observed as resonances

Proton Elastic Resonance Scattering

 $A + p \rightarrow B^*$ (resonance) $\rightarrow A + p$

Resonance observed in the low-energy proton elastic scattering Recently applied to unstable nuclei Low-energy beams are good for this process Large cross sections

→ ● For proton-rich nuclei: low-lying excited states

• For neutron-rich nuclei: highly excited states (with $T=T_z+1$)

Study of proton resonances in proton-rich unstable nuclei for explosive hydrogen burning in nuclear astrophysics

 $A(p, \gamma)B$ A & B are proton-rich unstable nuclei

Resonance level in nucleus B near the A+p threshold

• the (p,γ) reaction rates may be enhanced

 $A+p \rightarrow B^* \rightarrow B+\gamma$

Important to know experimental information on resonances to understand the reaction paths in explosive hydrogen burning

Unbound nuclei outside the proton drip line

The ground state of a nucleus as a proton resonance (unbound nucleus) c.f. ${}^{15}F \leftrightarrow {}^{14}O+p$

Resonance energy = mass of nucleus

nuclear stability, mass formula

Comparison with levels in the neutron-rich mirror nucleus Charge symmetry of nuclear force Effects of Coulomb force in nuclear structure

Experimental method

Experiment of proton resonance scattering $A+p \rightarrow B^* \rightarrow A+p$

> with a beam of unstable proton-rich nucleus "A" & a proton target In inverse kinematics

Experimental goals:

- To identify resonances in the excitation function $\frac{d\sigma}{d\Omega}(E_{\rm CM})$
- To determine resonance parameters E_R , Γ ($\sim \Gamma_p$), & J^{π}

Basic data for nuclear structure and astrophysical reaction rates However, it is unable to measure Γ_{γ} , which is necessary to deduce astrophysical (p, γ) reaction rates.

Thick-target method for A+p in inverse kinematics

Setup for A+p

at CRIB F2 or F3

The beam stops in the target. Recoil protons go out from the target.

Identification of Recoil Proton

 ΔE vs. E

E vs. Timing

Reconstruction of CM Energy

$$E_{\rm CM} = \frac{1}{4\cos^2\theta_p} \frac{A+1}{A} E_p$$

A: mass number of projectile E_p : proton energy (LAB) By SSD Resolution of 80 keV (FWHM) θ_p : angle of proton (LAB) By PPACs & SSD (double-sided strips)

Resolution of 0.5 deg (FWHM)

 $E_{\rm CM}$ is deduced from $E_p \& \theta_p$ on an event-by-event basis (energy loss in the target taken into account)

 E_p resolution of 80 keV $\rightarrow E_{CM}$ resolution of ~20 keV (FWHM) at $\theta_p = 0$

Better than the invariant mass method used in radioactive beam experiments (Contribution from energy straggling of proton in the target is small.)

¹¹C+p experiment (for ¹²N resonances)

To verify known values of E_R , $\Gamma (\sim \Gamma_p)$, J^{π} for low-lying levels in ¹²N For the astrophysical ¹¹C(p, γ)¹²N reaction rates (Hot-PP)

 J^{π} values for the 3.13 & 3.56-MeV levels

Result: ¹¹C+p (¹²N resonances)

T. Teranishi et al., PLB 556 (2003) 27

E & Γ are consistent width known values.

The resonances at 0.96 & 1.2 MeV are important for the ${}^{11}C(p,\gamma){}^{12}N$ reaction.

$J^{\pi} = 3^{-}$ newly assigned to the 3.13-MeV level

does not contribute so much to the (p,γ) reaction because of the M2 transition $3^- \rightarrow 1^+(g.s)$.

¹³N+p experiment (for ¹⁴O resonances)

Isobaric Analog Multiplets

• T = 1 levels in A=14 nuclei (¹⁴C, ¹⁴N, ¹⁴O)

Charge independence & Effects of Coulomb force in nuclear structure

• Experimental information on ¹⁴O is relatively poor

 $E_{\rm x}$ & Γ of resonances to study the astrophysical ¹³N(p, γ)¹⁴O reaction rates in the Hot-CNO cycle

¹³N+p result (¹⁴O resonances)

Preliminary Data

The 1⁻ resonance at 5.17 MeV dominates the astrophysical ${}^{13}N(p,\gamma){}^{14}O$ reaction rates

Solid line: R-matrix Energy resolution ~20 keV (FWHM)!

cf. ¹⁴N(³He,t)¹⁴O reaction

Collaborators for CRIB experiments

Kyushu-Univ., Japan CNS, Univ. of Tokyo, Japan RIKEN, Japan KEK, Japan Chung-Ang, Univ., Korea Ewha Woman's Univ., Korea ATOMKI, Hungary Sao-Paulo Univ., Brazil

Summary

Low-energy radioactive nuclear beams are useful to study resonance states near the particle threshold in unstable nuclei

Low-energy in-flight separator method

with intense primary beams and a large-acceptance separator Technically simpler than ISOL Complementary to ISOL

Experiments on proton-rich nuclei

¹¹C+p, ¹³N+p

Other projects in near future:

p-resonance scattering on neutron-rich nuclei a-resonance scattering on unstable nuclei