Gamma-ra so roscopy

Koike, Takeshi COE Fellow Department of Physics Tohoku University

Tohoku University

Y.Fujii, O.Hashimoto, K.Hosomi, S.Kinoshita, Y.Ma, Y.Miura, A.Matsumura, M.Mimori, M.Kaneta, S.N.Nakamura, Y.Okayasu, K.Shirotri, H.Tamura, K.Tsukada

E566 collaboration

KEK

Osaka Electro-Communication University Kyoto University Osaka University Seoul National University GSI

CYRIC Tohoku University

T.Endo, M.Fujita, Y.Miyashita, T.Nagano, M.Ohgma, N.Satho, T.Sinozuka, T.Suzuki, M.Tateoka, M.Ukai, T.Wakui, K.Yamashita, A.Yamazaki Rikkyou University/CNS T.Fukuchi

SUNY at Stony Brook, U.S.A T.Ahn, G.Rainovski

> University of York, U.K P.Joshi

ATOMKI, Hungary J.Timar

CIAE, China Y.Y.Fu, S.H.Zhou

Nuclei with strangeness : Hypernuclei

3D Nuclear Chart

γ-ray spectroscopy

- A powerful prove for precise measurements of nuclear bound states
 - (~2 keV for 1MeV γ ray with **HpGe** detectors)
- Has been limited to normal nuclear studies due to technical challenges

Hyperball2: a unique γ-ray spectrometer

Hyperball2 (& Hyperball)

- Functional in the 3D nuclear chart
 - Event by event reaction tagging with dipole magnet spectrometer (SKS)
 - Electronics for extremely high counting rates with a huge background environment

2nd Generation Ge array: Hyperball2 (operational since 2005)

[single crystal Ge detector+BGO]×14 + [clover Ge detector+BGO]×6

 Photo peak efficiency ~5% at 1MeV
 ⇒Twice that of Hyperball
 →2³ times for triple γ coincidence (multi-fold γ cascade decay event)

Electronics for high counting rate ~50kHz/detector or ~0.5TeV/ s/detector energy deposit U Hypernuclear γ -ray spectroscopy

Clover detectors

(1) Fully absorbed → Good event
(2) Compton escape → Rejected event
(3) Scatter to adjacent crystal (add-back) → Good event

Exploring 3D nuclear chart with Hyperball2 ¹¹_AB, ¹²_AC ⁷⁹Kr, ⁸⁰Br

- AN interaction
 - spin-dependent
 interactions: spin-spin,
 spin-orbit, tensor
- Nuclear medium effect on Λ
 - measurement of
 magnetic moment of Λ
 in nucleus

- Spontaneous formation of chirality
 - chiral doublet (twin)
 bands
- Stable triaxial nuclear deformation

Level Scheme from E566

In-beam γ-ray spectroscopy with Hyperball2 at CYRIC, Tohoku University 930 Cyclotron K=110

- Chiral doublet search in A~80 region (June & July,2005; March, July,2006)
 - ⁷⁰Zn(¹³C,4n)⁷⁹Kr @
 65MeV
 - ⁷⁰Zn(¹³C,p2n)⁸⁰Br @
 53MeV
- High-spin Isomer in N=83 isotones: ¹⁵¹Er (Feb., 2006)
 - ¹¹⁶Sn(⁴⁰Ar,5n)¹⁵¹Er @ 195MeV
- Triple coincidence

Chiral geometry in rotating nuclei Perpendicular Coupling of three angular momenta

K.Starosta et. al., Phys. Rev. Lett. 86, 971 (2001).

$$|I+\rangle = \frac{1}{\sqrt{2}} (|IL\rangle + |IR\rangle)$$
$$|I-\rangle = \frac{i}{\sqrt{2}} (|IL\rangle - |IR\rangle)$$

I >> 1 $\langle IL \mid E2 \mid IR \rangle \approx 0$ $\langle IL \mid M1 \mid IR \rangle \approx 0$ $B(EM; I_i + \rightarrow I_f +) \approx B(EM; I_i - \rightarrow I_f -)$ $B(EM; I_i + \rightarrow I_f -) \approx B(EM; I_i - \rightarrow I_f +)$

⁷⁰Zn(¹³C,xnpy)@ 65MeV

Triple coincidence total spectrum

- Hyperball2 is a unique Ge γ-ray spectrometer capable of exploring the 3D nuclear chart.
- KEK experiment in September,2005 $-{}^{12}_{\Lambda}C$ and ${}^{11}_{\Lambda}B$
- CYRIC experiment still ongoing $-\frac{79}{36}$ Kr and $\frac{80}{35}$ Br

Thank you

Sydng OOO 671 ·

10