Neutrinos from the Sun : Observation

The fourth COE Symposium Jun. 30, 2006 I. Shimizu (Tohoku Univ.)

Solar Neutrinos : Prediction and Measurement

Prediction

Measurement

SSM (Standard Solar Model)

Super-Kamiokande, <u>SNO</u> NC/CC discrimination CI (Homestake) Ga (Gallex/GNO, SAGE)

Solar Neutrino Problem

Measurements show significant v_e deficit from the sun

Neutrino Oscillation

Neutrino Oscillation Parameter which Reconcile all Experiments

Reactor Neutrino Experiments

> 100 km baseline is necessary to explore the LMA solution

KamLAND Experiment

2 flavor neutrino oscillation

$$P(\nu_e \to \nu_e) = 1 - \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [\text{eV}^2] l[m]}{E[\text{MeV}]}\right)$$

most sensitive region

$$\Delta m^2 = (1/1.27) \cdot (E[\text{MeV}]/L[m]) \cdot (\pi/2)$$

~ 3 × 10⁻⁵ eV²

→ LMA solution

Good condition to confirm solar neutrino oscillation

Kamioka Liquid Scintillator Anti-Neutrino Detector

Physics Target in KamLAND

observed energy (MeV) 0.4 2.6 8.5 1.0 solar neutrino geo neutrino supernova neutrino reactor neutrino solar neutrino reactor neutrino ν_x geo neutrino prompt ν_x ν_e р delayed mean capture time ~ 200 µsec on proton neutrino detection by electron scattering anti-neutrino detection by inverse beta-decay

First Result :

Evidence for Reactor Antineutrino Disappearance

162 ton-year data-set

Disappearance Significance : 99.95% C.L.

Second Result : Evidence of Spectral Distortion

766 ton-year data-set

Distortion Significance : 99.6% C.L.

Precise Measurement of Oscillation Paramter

Reactor Future Prospect

oscillation ratio = $(N_{obs} - B.G.) / N_{exp}$

Systematic	%
Fiducial volume _{dominar}	4.7
Energy threshold	2.3
Efficiency of cuts	1.6
Livetime	0.06
Reactor power	2.1
Fuel composition	1.0
v _e spectra	2.5
Cross section	0.2
Total	6.5

Fiducial volume uncertainty will be reduced by full volume calibration (now planing)

full volume calibration \rightarrow systematic uncertainty $\sim 4\%$

Future Solar Neutrino Measurement

low energy solar neutrino observation

KamLAND II (Solar Neutrino Phase)

KamLAND singles spectra

⁷Be ν observation

B.G. reduction requirement ~ 1 μ Bq / m³

Purification of Liquid Scintillator

distillation method

separation of substances based on boiling point differences

Real system

~ 1.5 kilo-liter / hour

Construction from August, 2006

Reduction Efficiency by Distillation

Pb reduction

distillation in ~ liter-system

radioactive nuclei	reduction	goal
⁴⁰ K	3.8 × 10 ⁻² (PPO, ⁴⁰ K)	10 ⁻¹ ~ 10 ⁻²
⁸⁵ Kr	< 1.3 × 10 ⁻⁵ (Dodecane, Kr)	10 -5 ~ 10 ⁻⁶
²¹⁰ Pb	< 7.6 × 10 ⁻⁵ (Dodecane, ²¹² Pb)	10 -4 ~ 10 ⁻⁵
²²² Rn	6.0 × 10 ⁻⁴ (Dodecane, ²²² Rn)	~ 10-3

almost succeeded in the reduction goal

Energy Spectra after Purification

assuming 10⁻⁶ reduction of ²¹⁰Pb, ⁸⁵Kr and ⁴⁰K

¹¹C rejection by neutron events

nuclear spallation reaction by cosmic-ray muons

¹¹C rejection by triple coincidence
(1) cosmic-ray muon
(2) neutron (mean capture time ~ 210 μsec)
(3) ¹¹C (lifetime = 29.4 min)

point-like rejection (not track-like) using neutron vertex information

$${}^{12}C + X \rightarrow {}^{11}C + n + Y + \cdots$$

 $X = \gamma, n, p, \pi^-, \pi^+, e, \mu$ n production rate ~ 95% (Galbiati et al., hep-ph/0411002)

Energy Spectra after ¹¹C rejection

pep and CNO v (0.8 < E < 1.4 MeV)

Low Energy ⁸B Neutrino MSW Distortion

3 year livetime, 268 m³ fiducial V (assuming no background) oscillation parameter : $(\sin^2\theta, \Delta m^2) = (0.28, 7.9 \times 10^{-5} \text{ eV}^2)$

MC condition

MSW distortion will be studied by ⁸B neutrino

Summary

- Solar neutrino observation revealed ν_e deficit from the sun. "solar neutrino problem"
- Reactor neutrino experiment contributed to solutions in solar neutrino problem.

KamLAND experiment

- oscillatory shape of reactor anti-neutrinos

- precise measurement of oscillation parameter
- In the future, observation of low energy solar neutrino will provide a greater understanding of the sun.