Review of Solar- and Geo-neutrinos

Tadao Mitsui (Research Center for Neutrino Science, Tohoku U.)

The 4th COE symposium June 28-30, 2006, Sendai International Center

<u>"Neutrino astronomy"</u> "Neutrino geophysics"

- Only 3 objects so far Sun, SN1987, Earth
 - ... but unique information
- Sun: evidence (only direct, and definite) for nuclear fusion ... power source of the sun
- Direct and real-time information from the core of the sun
- Earth: (evidence) for radiogenic heat ... power source of the Earth

2 unknowns : object and "filter"

(*1) neutrinograph of the sun by Super-K, (*2) hep-ph/0406294

- "Neutrino oscillation":
- $\forall v_e \text{ (solar } v \text{ is pure } v_e)$

 $\rightarrow \nu_{\mu},\,\nu_{\tau}$

- If the detector is sensitive only to v_e
 - → deficit, energy spectral distortion (the "filter" is not a ND filter)
- 2 unknowns: both are important objectives ...
- Unique experiments to solve the problem

Homestake (1964 ~ 1994)

- First solar neutrino observation
- Established solar neutrino deficit
- 615-ton C₂Cl₄, v_e(³⁷Cl, ³⁷Ar)e⁻
- Final result: 2.56 ± 0.16 ± 0.16 SNU
- SSM (BS05(OP)) expectation: 8.1 ± 1.2 SNU
- Data/SSM = 0.32 ± 0.02
- Great pioneers

From slides of H. Robertson (neutrino 2006) http://neutrinosantafe06.com/

SSM BS05(OP): J.N. Bahcall and Serenelli, 2005 SNU: 1 v interaction / sec each 10³⁶ target atoms

Kamiokande (1987 ~ 1995)

- First measurement of time, direction, energy of solar-v
- Data/SSM=0.48 ± 0.07
- Upgraded to Super-K

Gallium experiments

http://www.sns.ias.edu/~jnb/

- Sensitive to pp neutrino (main component of solar-v)
- v_e(⁷¹Ga, ⁷¹Ge)e⁻
- 67.7 ± 3.6 SNU new results (*1) (GALLEX + GNO + SAGE)
- SSM (BS05(OP)): 126⁺⁹-7 SNU
- Data / SSM = 0.54 ± 0.03 •

http://neutrinosantafe06.com/

Four solutions that were allowed only with fluxes (CI, Ga, Kamiokande)

Super-Kamiokande (1996 ~)

- 50 kton water cherenkov
- 22.5 kton fiducial
 - ~ 15 events / day (> 5 MeV)
 (⁸B, (hep))

Super-Kamiokande-I (1496 days) May 31, 1996 - July 13, 2001 22400 ± 230 solar v events

Energy spectrum of SK-I

M. Nakahata, Neutrino 2004, PLB 539, 179

Super-Kamiokande-I (1496 days) May 31, 1996 - July 13, 2001

SK-I day/night difference

M. Nakahata, Neutrino2004, PLB 539, 179

<u>SMA, Just-so: excluded by energy</u> <u>spectrum</u>

LOW, LMA: constrained by day/night Expected "regeneration" of v_e during night: too large compared with the data 10 1 111300 1 11100 m² in eV² (a) 10 0.9 5.5-6.5 MeV 6.5-8.0 MeV 8.0-9.5 MeV 0.8 -5 10 0.7 10 -6 0.6 0.5 10 ⁻⁷ 0.4 10 -8 NIGHTDA NIGHTDAY NIGHT 0.3 0.9 13.5-9.5-11.5 MeV 11.5-13.5MeV 10 -9 16.0MeV 0.8 10-10 0.7 0.6 10⁻¹¹ 95%C.L 0.5 Zenith Spectrum $v_e \rightarrow v_{\mu'\tau}$ 10⁻¹² 0.4 10⁻² 10⁻⁴ 10² 10^{-1} 10 NIGH1 NIGHTDAY NIGHTD 0.3^D $\cos\theta_{z}$ $\theta = 0.34$ tan²θ=0.65 Δm²=10⁻⁷eV²

Unique sensitivity to neutrino flavor

ES: elastic scattering (also SK) $v_{e} + e^{-} \rightarrow v_{e} + e^{-}$ $v_{\mu} + e^{-} \rightarrow v_{e} + e^{-}$ energy, direction

Determine φ_e, φ_{μ/τ}
 + 1 redundancy

2 unknowns : object and "filter"

(*1) neutrinograph of the sun by Super-K, (*2) hep-ph/0406294

- "Neutrino oscillation":
- $\forall v_e \text{ (solar } v \text{ is pure } v_e)$
 - $\rightarrow \nu_{\mu}, \nu_{\tau}$
- If the detector is sensitive only to v_e
 - → deficit, energy spectral distortion (the "filter" is not a ND filter)
- 2 unknowns: both are important objectives ...
- Unique experiments to solve the problem

<u>SNO enhanced neutral current (salt)</u> <u>phase</u> Sept. 2003 PRL 92, 181301 NC: neutral current Efficiency (%) (a) 📑 90**F** Salt phase Phase-I (Nov. 99 - May 01) Total eff. 70E --- • D₂O phase $\nu_{a} \rightarrow p + n + \nu$ 39.9% 50E 40F ν_{μ} 30 14.4% $n + d \rightarrow {}^{3}H + 6.25 - MeV \gamma$ 20È (phase-I) v_{τ} 10 0<u>F</u> 100 200500 300 400600 ²⁵²Cf Source Radial Position (cm) 2 ton NaCl dissolved Events/bin (arbitrary units) ²⁵²Cf Data ¹⁶N Data ¹⁶N Monte Carlo If Monte Carl Phase-II (July 01 - Sep 03) (6 MeV) 0.6 $+ d \rightarrow p + n + \nu$ $|v_e\rangle$ ν_{μ} 0.2 $n + {}^{35}Cl \rightarrow {}^{36}Cl + \& 6 - MeV \gamma$'s v_{τ} 0.2 0.40.80.6Isotropy Parameter $\beta_{1:1}$

Isotropic event Single cherenkov ring

Results: extraction of 3 reactions

PRL 89, 011301, results from 306.4 days

- CC: 1967.7^{+61.9} events
- NC: 576.5+49.5- @vents
- ES: 263.6^{+26.4}/₄₈events

Energy spectra: not assumed but

<u>measured</u>

http://neutrinosantafe06.com/

SNO ³He phase

J.F. Wilkerson, Neutrino 2004

- ³He proportional counter: to detect n from NC
- Event-by-event separation
- Better CC energy spectrum

 $n + {}^{3}He \rightarrow p + {}^{3}H$

- All 40 ³He strings installed (April, 2004) ٠
- run for 2.5 years \rightarrow $\times 2$ precision of present SNO result ٠

2 unknowns : object and "filter"

(*1) neutrinograph of the sun by Super-K, (*2) hep-ph/0406294

- "Neutrino oscillation":
- $\forall v_e \text{ (solar } v \text{ is pure } v_e \text{)}$
 - $\rightarrow \nu_{\mu}, \nu_{\tau}$
- If the detector is sensitive only to v_e
 - → deficit, energy spectral distortion (the "filter" is not a ND filter)
- 2 unknowns: both are important objectives ...
- Unique experiments to solve the problem

<u>Determination of solar neutrino solution</u> <u>Precise measurement of Δm_{12}^2 </u>

Solar data: Δm_{12}^2 , θ

add anti-neutrinos (KamLAND) (assumes CPT): Δm_{12}^2 , θ

Slide by B. Vogelaar (neutrino 2006) http://neutrinosantafe06.com/

2 unknowns : object and "filter"

(*1) neutrinograph of the sun by Super-K, (*2) hep-ph/0406294

- "Neutrino oscillation":
- $\label{eq:velocity} \begin{array}{l} \forall \ \nu_{e} \ \text{(solar} \ \nu \ \text{is pure} \ \nu_{e} \text{)} \\ \rightarrow \nu_{\mu} \text{,} \ \nu_{\tau} \end{array}$
- If the detector is sensitive only to v_e
 - → deficit, energy spectral distortion (the "filter" is not a ND filter)
- 2 unknowns: both are important objectives ...
- Unique experiments to solve the problem

Solar neutrino with correction of "filter effect"

SSM BP04 SSM BP04 observation "before oscillation"

Fig. from Nucl. Phys. B 149 (2005) 13

J.N. Bahcall, M.C. Gonzalez-Garcia, and C. Pena-Garay, J. High Energy Phys. 0408 (2004) 016, hep-ph/0406294.

- ⁸B: precisely measured
- pp: constrained by luminosity
- ⁷Be: key to understand total pp-chain

Experiment	mono-energetic v response	Solar v Sensitivity	%pp 5 yr	% ⁷ Be 5 yr	Status
Borexino		⁷ Be, pep?		5	results in a few years
KamLAND		⁷ Be, CNO?		5	results in a few years
LENS		$pp \Leftrightarrow CNO$	3	5	ready to prototype
MOON		$pp \Leftrightarrow CNO$			r&d only (for now)
CLEAN		pp ⇔ ⁷ Be	1	< 3	ready to prototype
HERON		$pp \Leftrightarrow {}^7Be$	1.5	5	r&d only (for now)
TPC		pp ⇔ ⁷ Be			r&d
XMass		pp, ⁷ Be			100 kg prototype
SNO+		⁷ Be, pep	1.5(pep)		TDR Fall 06, construct 07

Slide by B. Vogelaar (neutrino 2006) http://neutrinosantafe06.com/

Designing LMA

✤ Fine-tune Δm² such that the transition between the regimes occurs at the intermediate solar energies Δm²~G_FN_☉ (10⁶eV) ~ a few × 10⁻⁵ eV²

Slide by A. Friedland (neutrino 2006) http://neutrinosantafe06.com/

Matter Interaction Effect:LMA

Current Data for v_e Survival

From Slide by E. Akhmedov (neutrino 2006)

http://neutrinosantafe06.com/

Statistical Limitation for Observing "Small" Day-Night Asymmetry → Ultimately Combine Data from all Phases

Slide by A. Hime (neutrino 2006) http://neutrinosantafe06.com/

Slide by A. Hime (neutrino 2006) http://neutrinosantafe06.com/

Low-energy ⁸B neutrino_MSW distortion

■ If ²⁰⁸TI (β + γ , Q = 5 MeV) reduced enough ■ \rightarrow ²³²Th reduction needed (distillation works?)

KamLAND: low-energy frontier

<u>"Geoneutrinos"</u>

- Electron antineutrinos produced in the Earth's interior (crust and mantle) by decays of ²³⁸U, ²³²Th, and ⁴⁰K
- **Decays of** 238 U, 232 Th, and 40 K :

~40% of Earth's power

- Earth's power: → plate tectonics, earthquakes, volcanoes, geomagnetism, …
- Origin and history of the Earth
- Pointed out since v discovered (1950's, G. Gamow, ...)

Heat balance of the Earth

Heat flow measurement:

44 TW? (Pollack H.N. et al, Rev. Geophys 31, 267)

31 TW? (Hofmeister, A.M et al. Tectonophysics 395)

Cooling of core, solidification of outer core, ... (originates from initial gravitational energy)

<u>Summary</u>

see talks S. Enomoto and I. Shimizu

