Phase IV in $Ce_{07}La_{03}B_6$: X-ray Resonant Scattering Results **D.** Mannix XMaS ERSF, France. Y. Tanaka Spring-8 Japan. **D.** Carbone ESRF, France. N. Bernhoeft CEA-Grenoble France. S. Kuni Tohoku University, Japan.

Magnetic Properties

LoadStone Magnetic Compass

Magnetic Data Storage

Multi-billion dollar computer industry

Fe₃O₄ Magnetite

Magnetic Order

Temperature, Pressure, Magnetic fields

S±1⁄2

J=L±S

Multipolar Order

Quadrupole charge order Antiferroquadrupole order

Multipolar Order

Quadrupole charge order Antiferroquadrupole order

Magnetic Octupole Order Very Rare and exotic form of Magnetic Order CeLaB₆, NpO₂.

Multipolar Order

Hexadecapole Charge Order Multipole Order: large L small S e.g. Ce, Nd, Tm, Dy, U and Np compounds RXS probe: Weak interaction for Neutrons Magnetic Octupole Order Very Rare and exotic form of Magnetic Order CeLaB₆, NpO₂.

X-Ray Single Crystal Diffraction

X-Ray Single Crystal Diffraction

Synchrotron Radiation ESRF

6 GeV Storage Ring844M Circumference40 Beamlines

Huge flux 10^{12} – 10^{13} photons/sec High linear polarisation ~100%

E1E1 X-Ray Resonant Scattering at Ce L₂ edge

E1E1 XRS from multipole order

Anisotropic Tensor Susceptibility ATS

E2E2 XRS from multipole order

▼.

X-ray Polarisation Dependence

Azimuthal Dependence

Azimuthal Dependence

Phase IV: T<T_{IV}=1.5K

- | Paramagnetic
- II Antiferroquadrupole order q=(1/2 1/2 1/2)
- III Antiferromagnetic order q=(1/4 1/4 1/2)
- IV Proposed new phase
- Phase IV ground state has remained elusive.

Enigmatic Phase IV

Specific Heat:

Large anomaly in Specidif heat is indicative of long rang order.

Cusp in magnetic susceptability: Antiferromagnetic Order?

No Magnetic Structure has been reported by neutron scattering.

Antiferroquadrupole Order ?

Large softening of c_{44} elactic constant.

This does not happen in pure CeB₆ in the AFQ phase?

? Magnetic Octupole Order in Phase IV?

Kubo & Kuramoto J. Phys. Soc. Jpn. 73 216 (2004).

RXS study of Phase IV

E1 and E2 Thermal and Spatial Independence !

Azimuth dependence at 1.0 Kelvin

$$\begin{split} f_{nE2}(\Phi) &= \sum_{i=1}^{\circ} [-i(F_{E2}^{3})][(k_{f} \cdot Z_{n}^{i}(\Phi))(k_{i} \cdot Z_{n}^{i}(\Phi))(\epsilon_{f} \times \epsilon_{i}) \cdot Z_{n}^{i}(\Phi) + (\epsilon_{f} \cdot Z_{n}^{i}(\Phi))(\epsilon_{i} \cdot Z_{n}^{i}(\Phi))(k_{f} \times k_{i}) \cdot Z_{n}^{i}(\Phi) \\ &+ (\epsilon_{f} \cdot Z_{n}^{i}(\Phi))(k_{i} \cdot Z_{n}^{i}(\Phi))(k_{f} \times \epsilon_{i}) \cdot Z_{n}^{i}(\Phi) + (k_{f} \cdot Z_{n}^{i}(\Phi))(\epsilon_{i} \cdot Z_{n}^{i}(\Phi))(\epsilon_{f} \times k_{i}) \cdot Z_{n}^{i}(\Phi)] \end{split}$$

Following Hill & McMorrow Acta Cryst. A52 236 (1996).

RXS without Polarisation Analysis

 $\sigma\sigma$ Intensity larger than $\sigma\pi$

Kusunose and Kuramoto

Quadrupole vs Octupole Order

Nagao and Igarashi

Conclusions

- 1. The first microscopic study of phase IV using RXS \rightarrow Compact XMaS 1K cryostat azimuth scans.
- 4. Thermal and spatial independence of E1 & E2 RXS \rightarrow evidence two order parameters
- 7. 5d short range AFM order \rightarrow below T_{IV}=1.5K and above (~3K) at q=($\frac{1}{2}$ $\frac{1}{2}$)
- 4. Simple model for E2 T-dep, azimuth & Bragg dependence: \rightarrow 4f octupole order with T_{1u} symmetry elements \rightarrow at q=($\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$) below T_{IV} only.
- 14. No evidence for AFQ order in phase IV (No E1E1 $\sigma\sigma$) \rightarrow direct evidence for new phase

D. Mannix et al. Physical Review Letters 95 117206 (2005)

6. Theory: Kusunose and Kuramoto, Nagao and Igarashi, Lovesey and Katsumata. Furure experiments at (0.5 0.5 0.5) and Ce L_3 edge.