4th COE symposium June 28-30, 2006

Recent Photoemission Results for the Electron-Doped High-Temperature Superconductors

Hiroaki Matsui (Tohoku Univ.)

Collaborators

T. Takahashi, T. Sato, K. Terashima (*Tohoku Univ.*)H. Ding, S.-C. Wang, H.-B. Yang (*Boston College*)K. Yamada, M. Fujita, T. Uefuji (*IMR, Tohoku Univ.*)

1. Introduction

- 2. ARPES results for *e*-doped HTSC
 - i) Normal state

Pseudogap and quasiparticle

- ii) Superconducting state Superconducting gap symmetry
- 3. Summary

Key electronic structures in HTSC

Electron-dope

Hole-dope

Gap symmetry

Fermi surface

N.P. Armitage et al. 2001.

Pseudogap

N.P. Armitage et al. 2002.

Quasiparticle

Gap symmetry

30

ر 20 تو 20

10

0

Pseudogap

Quasiparticle

FS angle (deg)

H. Ding et al. 1996.

2040 60

d__2]_2

80

1. Introduction

- 2. ARPES results for e-doped HTSC
 - i) Normal state

Pseudogap and quasiparticle

ii) Superconducting state

Superconducting gap symmetry

3. Summary

Near E_F ARPES intensity in Nd_{1,87}Ce_{0.15}CuO₄

Magnetic zone boundary

Near E_F ARPES intensity in Nd_{1.87}Ce_{0.15}CuO₄

Magnetic zone boundary

Momentum dependence of ARPES spectra in NCCO (x= 0.13)

Modification of band dispersion by AF band-folding effect

Modification of band dispersion by AF band-folding effect

Temperature dependence of ARPES spectra in NCCO (x= 0.13)

Doping dependence of T* in NCCO

Doping dependence of T* in NCCO

Doping dependence of pseudogap in NCCO

1. Introduction

- 2. ARPES results for *e*-doped HTSC
 - i) Normal state

Pseudogap and quasiparticle

- ii) Superconducting state
 Superconducting gap symmetry
- 3. Summary

Superconducting gap in $Pr_{0.89}LaCe_{0.11}CuO_4$ (T_c= 26K)

Superconducting gap in $Pr_{0.89}LaCe_{0.11}CuO_4$ (T_c= 26K)

Momentum dependence of SC gap in PLCCO

Momentum dependence of SC gap in PLCCO

Numerical fitting of the superconducting gap

d + 2nd higher harmonic

 $\Delta(\phi) = \Delta_0(A\cos 2\phi + B\cos 6\phi)$

d + g wave

 $\Delta(\phi) = \Delta_0(A\cos 2\phi + B\sin 4\phi)$

Summary

High-resolution ARPES in Nd_{2-x}Ce_xCuO₄ and Pr_{1-x}LaCe_xCuO₄

i) Normal state : pseudogap & quasiparticle

- Systematic variation of band dispersion explained by the AF band-folding effect
- Pseudogap temperature (T*) determined by the spin correlation length
- Linear doping dependence of $\Delta_{\rm PG}$

Magnetic excitation strongly couples to the electronic states near the Fermi level in electron-doped HTSCs

Summary

High-resolution ARPES in Nd_{2-x}Ce_xCuO₄ and Pr_{1-x}LaCe_xCuO₄

ii) Superconducting state : gap symmetry

- Nonmonotonic $d_{x^2-y^2}$

 Δ_{max} at the hot spot where the AF fluctuation most strongly couples to the electrons on the FS

Magnetic interaction plays an essential role in the pairing mechanism of electron-doped HTSCs

Experiments

ARPES : • Tohoku University

 Synchrotron Radiation Center at Wisconsin

Photon energy = 21.218 eV, 22 eV Energy resolution = 5 - 15 meV Angular (momentum) resolution = 0.1° ($0.007A^{-1}$)

Ultrahigh-resolution photoemission spectrometer at Tohoku University

Superconducting gap in low-T_c superconductors

Samples for detailed doping dependence

$$Nd_{2-x}Ce_{x}CuO_{4}$$
 (x= 0.13-0.17)

T. Uefuji et al., Physica C 357-360, 208-211 (2001).

Momentum dependence of ARPES spectra in NCCO

Doping dependence of the Fermi surface in NCCO

T= 30 K

Doping dependence of ARPES spectra in NCCO

Doping dependence of Fermi surface in NCCO

Doping dependence of Fermi surface in NCCO

 $Z \equiv$ in-gap spectral weight / total spectral weight [-0.4eV~E_F]

Doping dependence of in-gap spectral weight

Doping dependence of in-gap spectral weight

Anomalous transport properties in electron-doped HTSC <---> pseudogap by spin correlation

Comparison with the Raman study

Raman

 $\Delta_{\rm B2g}/\Delta$ ~ ~ 1.34

 $\Delta_{\rm hot \ spot} / \Delta_{\rm antinode} \sim 1.3$

ARPES

Comparison with the Raman study

Raman

Raman Response Function (arb. units)

$$\Delta_{\rm B2g}/\Delta$$
 , ~1.34

 $\Delta_{
m hot\ spot}/$ $\Delta_{\text{antinode}} \sim 1.3$

ARPES

Fermi surface and band dispersion in Pr_{0.89}LaCe_{0.11}CuO₄

 $(T_c = 26 \text{ K})$

Fermi surface and band dispersion in Pr_{0.89}LaCe_{0.11}CuO₄

 $(T_c = 26 \text{ K})$

Numerical fitting of the ARPES spectrum in PLCCO

Superconducting gap in $Pr_{0.89}LaCe_{0.11}CuO_4$ (T_c= 26K)

 (π, π)

 $(\pi, 0)$

B

Α

-20

Nordal band direction in NCCO (x= 0.15)

Shadow band in NCCO

Superconducting gap symmetry in HTSCs

