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Outline:

- condensed matter physics - is there anything left to 
understand?

- properties of conventional and “high temperature” 
superconductors

- introduction to Angle Resolved Photoemission 
Spectroscopy

- electronic properties of high temperature 
superconductors

- new results



condensed matter physics - is there anything left to understand?

all physics covered by electrodynamics + quantum mechanics

fortunately electrons in copper are weakly interacting and can be 
described by Landau Fermi Liquid model (1:1 correspondence with 
free electron gas), but in many systems the interactions are strong 
and current state of the art calculations can deal with ... 7x7 lattice

US penny: 3.1 grams of copper, 2.9x1022 electrons

a DVD has 4x1010 bits
so to store information only about spin for each electron we 

need:  7.25 x 1011 DVD’s, but this is clearly not enough to do 
any meaningful calculations 

... but complexity and new phenomena arise from large numbers of 
interacting particles



Superconductivity
Discovered in 1911 by 
Kamerlinght Onnes  first 
in mercury, then many 
other metals and alloys
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Complete theory (BCS) 
due to Bardeen, Cooper 
and  Schrieffer in 1957



Superconductivity

pairing + condensation

pair of two 
electron is a boson 

bosons can 
condense creating 

superfluid



In the metals electrical resitance 
arises due to scattering of the conduction 

electrons from defects

E



In BCS the attractive pairing interaction 
between electrons arises from interaction 

with the lattice vibrations (phonons)



In the superconducting state current is being 
carried by superfluid - condensate of very large 

number of electron pairs
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High temperature superconductors
Discovered in 1986 by Bednorz and Müller.

Observed so far only in materials that contain copper oxide.

Superconducting transition temperature (Tc) up to 130K.
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Pairing mechanism - unknown
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High resolution UV beamline at Synchrotron 
Radiation Center, Wisconsin
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800 MeV ring at

Synchrotron Radiation Center
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...  high precision lab-based ARPES system

Energy resolution:
~1.2 meV

Angular resolution:
0.1 deg.

UV source:
1013 photons/sec.



From atoms to solids:

two isolated atoms

two atom molecule

solid

Kittel - “Solid state physics”



Dispersion relation - energy bands

insulator

metal

Kittel - “Solid state physics”
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ARPES experiment

We need:
binding energy - Eb 
initial momentum - ki

sample
Eb = E - hv + W

ki
||=kf

|| = √2mE/h2  sinθ

ki
|=0 for quasi 2D samples

   



N
or

m
al

iz
ed

 in
te

ns
ity

-400 -300 -200 -100 0
Energy [eV]

 

typical photoemission spectrum from Bi2212
Bi 4f5/2 & 4f7/2
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 T=300K
 T=40K

Sr3d3/2,Sr3d5/2
Theta=5 deg, hv=500 eV

Bi 5f1/2 , 5f3/2
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Emission angle:
 

 0 deg
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 30 deg
 40 deg
 50 deg

Ca2p1/2, Ca2p3/2
hv=500 eV
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Sr3p1/2,Sr3p3/2
Theta=5 deg, hv=500 eV

C 1s

 T=300K
 T=40K

valence band

conduction band
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Valence and conduction bands - simplest example:   
                                              poly Au
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Typical “modern” ARPES data:
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symmetry of Ψ electronic structure

and interactions
A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001) 
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Eli Rotenberg, Advanced Light Source



C. G. Olson, D. W. Lynch et al.,
Science 245,  731-733 (1989)

Superconducting gap
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J. C. Campuzano et al., 
Phys. Rev. B 53, 14737 (1996)



d-wave order parameter

H. Ding et al., Phys. Rev. B 54, 9678 (1996)
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5.0 meV

Laboratory system: Scienta analyzer and He Lamp



S. Souma et al.,  Nature, 423, 65 (2003)
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Collective modes
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Interaction of electrons with a phonon:

Ashcroft and Mermin 
“Solid State Physics”



 Renormalization effects along nodal direction

T. Valla et al., Science 24, 2110 (1999) 
P.V. Bogdanov et al., Phys. Rev. Lett. 85, 2581 (2001)
A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001) 
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Based on the dispersion we can conclude that the interaction with the collective mode occurs 
only in the superconducting state, its energy is constant throughout the Brillouin zone and its 
strength increases significantly towards the antinode. These properties are consistent with the 
resonant mode observed by Inelastic Neutron Scattering (INS) experiments.

2.0

1.5

1.0

0.5

0.0

v F
 [e

V
 A

ng
]

1.00.90.80.70.60.5
kx [π/a]

Fermi velocity in the normal state

dispersion in normal and superconducting state 

40

30

20

10

0

V
h/V

l

1.00.90.80.70.60.5

kx(π/a)

strength of coupling 
in the SC state

-1

0

1

10-1
kx [π/a]

A. Kaminski et al., 
Phys. Rev. Lett. 86, 1070 (2001) 
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A. Kaminski et al., Phys. Rev. Lett. 86, 1070 (2001) 



Properties of the bosonic mode          compatibility
                                                   magnetic        phonons  

1) isotropic energy ∆+Ω                    yes             yes

2) momentum anisotropy                    yes         yes, recently

3) temperature dependence               yes         not obvious

4) doping dependence                         yes         not obvious

Collective mode “score” card



Ag on Ag(111)Cu on Cu(111)

Scattering in traditional STM

SPECS website

Autocorrelated (AC) ARPES - new tool in 
studies of scattering processes



-12 meV

AC ARPES: q-space

Fourier transform

FT STM

J. E. Hoffman et al, 
Science 295, 466 (2002)

J. E. Hoffman et al, 
Science 297, 1148 (2002)

K. McElroy et al, 
Nature 422, 592 (2004)

L. Capriotti et al, 
PRB 68, 014508 (2003)

R. S. Markiewicz et al, 
PRB 69, 214517 (2004)
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AutoCorrelated (AC) ARPES - 
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Comparison of FT STM and AC ARPES
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K. McElroy et al, 
Nature 422, 592 (2004)

U. Chatterjee et al, 
Phys. Rev. Lett. 
(submitted)



Conclusions:

- ARPES is an excellent probe to study electronic properties of strongly 
correlated systems such as heavy fermion systems and high 
temperature superconductors

- the only relevant feature in electronic structure for high temperature 
superconductivity is a hole pocket Fermi surface centered at kx=ky=1

- bridging the results from ARPES and FT STM will lead to better understanding 
of low energy excitations and possibly high temperature superconductivity


