# **Dark Matter and Gravitational Lensing of Galaxy Clusters**

#### Masahiro Takada (Tohoku U.)

The 4<sup>th</sup> COE Symposium, 06/06/29, Sendai

# **<u>Collaborators</u>**

- T. Futamase
- M. Takada
- N. Okabe
- Y. Okura
- E. Matsumoto

- Y. Komiyama (NAOJ)
  M. Oguri (Princeton)
  G. P. Smith (Birmingham)
  J. P. Kneib (Marseille)
  R. S. Ellis (Caltech)
- K. Umetsu (ASIAA Taiwan)
- T. Broadhurst (Tel Aviv)

\* Pink color: Tohoku U.

## **Gravitatoinal Lensing of Cosmic Hierarchical Structures**

Stars – Galaxies – Clusters of Galaxies – Large-Scale Structure

2D Mass Density Map (0<z<1) Cluster of Galaxies 5Mpc ( $\Rightarrow$  < 1 degree) 3 degrees (Prof Jain's Talk) (From Y. Hideki, NAOJ) (Jain, Seljak & White 00)

# **CDM Model of Structure Formation**

- Cold Dark Matter
  - Probably heavy particle (~100GeV), but yet unknown
  - Interact only via gravity
  - Negligible interaction and self-interaction
- CDM structure formation scenario
  - Initial conditions: precisely constrained from CMB
  - Use an N-body simulation to study the hierarchical structure formations
  - Bottom-up: smaller objects first formed, then larger ones formed via mergers and mass accretion



# **Mass Density Profile of DM Halos**

Simulation-based predictions: the appearance of a characteristic, universal density profile (Navarro, Frenk & White 96, 97; NFW profile)



## **Galaxy Clusters and Gravitational Lensing**

- Most massive gravitationally bound objects
  - $-10^{14} \sim 10^{15} \text{ M}_{sun} (100 1000 \text{ galaxies})$
  - Strongest S/N of lensing signals
  - DM plays a dominant role to the formation processes; baryonic matter is important only on <10kpc</li>
  - Suitable for testing an NFW profile  $\Leftarrow$  Gravitational lensing
- Astronomically very interesting objects to study
  - Seen with various wavelengths (radio, optical, X-ray)
  - Connection between DM (gravity), hot gas (baryonic matter) and galaxies (a tiny part of baryons)







# **Gravitational Lensing of Cluster**

- a unique means of measuring mass (mainly DM) distribution -
- •Strong Lensing
- Multiple Images
- Large Arcs, Ring
- Obvious Distortion



- •Weak Lensing
- Slight Stretching
- Distortion small
  compared to initial
  shape
- Statistical lensing



# **HST and Subaru Telescope**

#### Hubble Space Telescope



- 2.4m
- High angular resolution
- ~3'x3' FoV
- Best instrument for measuring strong lensing in the innermost region



- 8.2m
- High image quality among other 8m-class telescopes
- ~30'x30' FoV
- For measuring weak lensing in the outer region

# Abell 1689 (Initial Result)

- One of most massive clusters @ z=0.183 $-\sim 2\times 10^{15} M_{sun}$  (~1000 gals),  $r_{vir} \sim 2 Mpc$ 
  - Known as strong lensing cluster: largest Einstein radius (≈50" for z=3) ⇔ typically ~15"
  - X-ray temperature ~ 9keV (XMM: Anderson & Madejski 2004)
  - Velocity dispersion  $\sigma_{1D}$ =2400km/s (Targue et al. 1990) or 1400km/s (Girardi et al. 1997)
- Observed by ACS/HST and Subaru
- Best target cluster for studying gravitational lensing

# **ACS/HST Image of A1689**



## ACS/HST Image of A1689 (contd.)



#### **Unprecendented Angular Resolution**

Allows to find 106 candidates of multiple images for 30 background galaxies (⇔ before ACS, typical few arcs per cluster)

Allows a precise modeling of the mass distribution (Broadhurst et al. 2004)

## Subaru V and i' data of A1689

- Field of View:  $34' \times 27'$
- Subaru is most suitable instrument for WL measurement among other 8-m class telescopes thanks to its wide FoV and excellent image quality



## **Background Galaxy Selection**



## WGL: Shearing of Background Galaxy Images

**True Background** 

Observable: ellipticity in background galaxy images

$$\gamma \equiv \frac{a-b}{a+b} = \gamma_{\rm GL} + \gamma_{\rm int}$$

For a cluster

$$\gamma_{\rm GL} \approx O(0.1), \ \sigma_{\rm int} \approx 0.3$$

Assumption:  $\langle \gamma_{int,i} \rangle = 0$ (random orientation)

$$\langle \gamma_+ \rangle_{\varphi} (\theta) = \gamma_{\rm GL}(\theta) + \frac{\sigma_{\rm int}}{\sqrt{N_g}}$$



Lensed Image

## Result (Broadhurst, MT, Umetsu et al. ApJL, 05)

• Significant S/N ( $12\sigma$  in total), up to 20' in radius

• Stronger distortion with decreasing radius

• A secure selection of background galaxies leads to the correct signal, otherwise a factor of 2-5 underestimation (Clowe & Schneider 2001; Bardeau et al. 2004)

•Test of the systematics: a signal of  $g_x$  is consistent with null signal



# **Result: Mass Map**



### **Result: Mass Reconstruction**



## Mass Reconstruction and its Indications

 Succeeded to probe the mass distribution from 10kpc to ~2Mpc in radius



- The 2D radial profile can't be fitted by a single power law, but can be fitted by the CDM prediction, an NFW profile.
- However, possible conflicts between the CDM predictions and the lensing results are found
  - A large concentration (the ratio of the radius r^-2 to the virial radius): c~14 compared to the theoretical expectation c~4
    - Various subsequent studies on this issue: e.g., a statistical fluke
  - An inner slope is shallower than r^-1?

#### **Constraints on NFW Halo Mass-Concentration**



### **An Inner Slope: Generalized NFW Profile**

DM density profile:  $\rho \propto r^{-\alpha} (1 + r/r_s)^{-3+\alpha}$ 

**Other clusters**  $\checkmark$  c~12 for MS2137 (Gavazzi et  $ho_{3D}\!\propto\!\mathrm{r}^{-lpha}(1\!+\!\mathrm{r}/\mathrm{r_s})^{-3+lpha}$ 20 al. 2003)  $\checkmark$  c~22 for Cl0024 (Tyson et al. halo concentration 1998; Kneib et al. 2003) ✓ α~0.5 for A383, MS2137, A963, MACS1206, A1201; α~1 15 for RXJ1133 (Sand et al. 2002, 2004) **Possible origin** ✓ Baryon contraction (c<sup>↑</sup>,  $\alpha^{\uparrow}$ Gnedin et al. 2004), but seems Cored profile ( $\alpha$ =0) is favored. difficult 10 ✓ DM nature?( $\alpha \downarrow$  Yoshida et al. ✓ Still high concentration ( $c\sim 15$ ). 2000) 0.5 1.5✓ AGN heating?  $\Leftrightarrow$  cooling flow problem inner slope of mass density profile  $\alpha$ 

### **Self-interacting DM** Scenario

(Spergel & Steinhardt, PRL ,00)

- Yoshida et al. (2000) performed N-body simulations of halo region for self-interacting DM scenario.
- The self-interaction leads to more isotropic velocity distribution, compared to the collisionless scenario.
- The resulting halo has a rounder shape and its inner profile generally has a shallower slope  $(\alpha < 1)$  (even a cored structure if sigma is large enough).



 $_{\rm DM}$  = 0.1g<sup>-1</sup>cm<sup>2</sup>  $\approx 10^{-25} \, \frac{\mathrm{cm}^2}{\mathrm{GeV}}$ 

 $\sigma_{\rm DM} = 1 {\rm g}^{-1} {\rm cm}^2$ 



 $\sigma_{\rm DM} = 10 {\rm g}^{-1} {\rm cm}^2$ 

# **Future Prospects**

### International Collaboration: ``*The Ultimate Gravitational Lensing Study of Galaxy Clusters*"

- Subaru observation (PI: Prof. Futamase)
  - 3 nights so far allocated (however, not so good weather unfortunately): have collected data for ~15 clusters
- HST/ACS observation (PI: G.P.Smith)
  - 143 orbits observations (starting form 2007 Jan)
  - Will observe the central region of 143 clusters
- Also other wavelengths data (X-ray, radio etc) are available for sub-sample of clusters
- We expect that this project will deliver us an important clue to resolving the nature of DM.

# **Summary**

- Gravitational lensing is a unique means of probing the mass distribution in a galaxy cluster
- Combining strong and weak lensing, Subaru and HST, can be a powerful way to reconstruct the mass distribution from ~10kpc to ~Mpc.
- The mass distribution obtained provides us an important clue to resolving the nature of DM.
- We are conducting the international collaboration of the ultimate study of lensing clusters in order to make a quantitative test of CDM predictions on small scales



## **Another WL observable: Magnification Bias**

- Lensing of a cluster leads to a change in the number counts of background galaxies brighter than a given limit:  $n(m < m_{cut})$ 
  - Negative effect: Reduces an observed solid angle compared to blank field
  - Positive effect: Brightens a galaxy so that it may be included in a sample
- If the intrinsic number counts is given by

 $n_0 (m < m_{\text{cut}}) \propto 10^{ms}$  (s = 0.22 ± 0.03 for red galaxy sample)



## **Result: Magnification Bias**



#### **Model-Independent Mass Profile Reconstruction**

Find the best-fit model,  $\kappa(\theta_i)$ , to reproduce the two measurements.



#### Self-interacting DM Scenario

(Spergel & Steinhardt 2000)

- Yoshida et al. (2000) performed N-body simulations of halo region for self-interacting DM scenario.
- The self-interaction leads to more isotropic velocity dispersion compared to the collisionless scenario.
- The resulting halo profile is shallower ( $\alpha$ <1) and has a cored structure in the inner region.



### **Mass Profile Reconstruction**



#### **Mass Reconstruction Result of the ACS data (B04)**





2分以下の領 域では、 masking area は約20%の 割合い

### **The Unlensed Number Counts(1)**



#### **The Unlensed Number Counts(2)**



#### **Mass(Shear) Map vs Smoothed Number Counts Map**



### **Baryonic Effect on Halo Mass Profile**



• At r<10kpc, baryon is dominant to the total matter

• The slope of total matter steapens