$\S1$ Introduction.

• Problem (P).

	$\int \partial u/\partial t$	=	$\Delta u + u^{p-1}$	in	$\Omega \times (0, T_m),$
	u	=	0	on	$\partial \Omega imes (0, T_m)$
	u	\geq	0	in	$\Omega \times (0, T_m),$
	<i>u</i> (0)	=	a	in	Ω.

where

- $\cdot u = u(x,t),$
- $\cdot \ \Omega \subset \mathbb{R}^3$: ball,

$$\cdot \Delta = \sum_{j=1}^{3} \partial_{x_j}^2$$
: Laplacian,

 $\cdot p > 2$,

- · a: continuous and a = 0 on $\partial \Omega$,
- T_m = the maximal existence time of u.

It is known that

$$T_m < \infty \Rightarrow \lim_{t \to T_m} \|u(t)\|_{\infty} = \infty$$

where $||u(t)||_{\infty} = \max_{x \in \Omega} |u(x,t)|$: L^{∞} -norm.

$\partial u / \partial t = \Delta u + u^{p-1}$

:" Reaction-Diffusion equation."

• Linear part.

$$\partial u/\partial t = \Delta u \text{ (in } \Omega = \mathbb{R}^3) \Rightarrow$$

 $u(x,t) = \frac{1}{(4\pi t)^{3/2}} \int dy e^{-|y|^2/4t} a(y) \text{ for } t > 0,$
 $\|u(t)\|_{\infty} \simeq \frac{1}{t^{3/2}} \text{ as } t \to \infty.$

• Nonlinear part.

$$\partial u/\partial t = u^{p-1}$$
 (note that this is ODE) \Rightarrow
 $u(t) = (\frac{\beta}{T-t})^{\beta}, \ \beta = 1/(p-2)$ for $t < T$,
 $u(t) \simeq \frac{1}{(T-t)^{\beta}} \to \infty$ as $t \uparrow T$.

• Structure of (P).

 $\begin{array}{c|c} \Delta u \text{ (diffusion term)} & u^{p-1} \text{ (blow up term)} \\ \hline makes u \text{ flatten} & makes u \text{ peaking} \end{array}$

• Known facts.

a	u(t)	control equation
small	$u(t) ightarrow$ 0, $T_m = \infty$	$u_t = \Delta u$
large	$u(t) ightarrow\infty$, $T_m<\infty$	$u_t = u^{p-1}$

: well-known.

What happens when *a*: **middle**-size?

In general, it is expected that

 $u(t) \rightarrow$ stationary solution as $t \rightarrow \infty$.

Really?

§2 Variational problem and stationary solutions.

• Stationary equation (E).

(E)
$$\begin{cases} 0 = \Delta u + u^{p-1} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \\ u \ge 0 & \text{in } \Omega. \end{cases}$$

Result —

 $p < 6 \Rightarrow$ (E) has a (unique) solution. $p = 6 \Rightarrow$ (E) has no solution.

What is 6?

• Variational formulation for (E).

$$J(u) = \frac{1}{2} \int |\nabla u(x)|^2 dx - \frac{1}{p} \int |u(x)|^p dx$$

 \cdot Derivative of J at u in the direction v:

$$\frac{d}{dt}J(u+tv)\Big|_{t=0} (=J'(u)v)$$
$$= \int (\Delta u(x) + u(x)^{p-1})v(x)dx$$

Hence

u: critical point of
$$J(J'(u) = 0)$$

 1
u: solution of (E).

• Construction of the critical point of J.

The construction of solutions of (E):

step 1. Construction of a sequence (u_n) s.t. "nearly critical point (solution)". **step 2.** Convergence of (u_n) .

When $p \leq 6$, step 1.: OK. For step 2.,

 $p < 6 \Rightarrow OK$, $p = 6 \Rightarrow NO$.

What happens for (u_n) when p = 6?

• Scale invariance of J.

Let $\lambda > 0$ and $g_{\lambda}u(x) := \lambda^{1/2}u(\lambda x)$.

Then $\int |\nabla g_{\lambda} u|^2 = \int |\nabla u|^2$. Moreover,

$$\int |g_{\lambda}u|^p = \int |u|^p \Leftrightarrow p = 6.$$

p = 6 is the only number s.t. J is invariant under the scaling (g_{λ}) , i.e., $J(u) = J(g_{\lambda}u)$, $\forall \lambda > 0$, $\forall u$. • Expression of the sequence consists of nearly critical point of J when p = 6.

$$U(x) = \frac{C}{(1+|x|^2)^{1/2}} \text{: sol. of}$$
$$0 = \Delta u + u^{6-1} \text{ in } \mathbb{R}^3. \quad (*)$$

 \cdot Rescale U so that $g_\lambda U$ looks like

Then by the scale invariance, $g_{\lambda}U$ satisfies (*) and nearly only defined on Ω . $\Rightarrow g_{\lambda}U$ is a nearly c. point of J.

· Analyzing these facts further, we obtain

Expression of the nearly c. point (u_n) is a sequence of nearly c. point of $J \Leftrightarrow$ $u_n \simeq \sum_{j=1}^m g_{\lambda_n^j} U, \quad \lambda_n^j \to \infty$ for some natural number m.

i.e., some kinds of "quantization" occurs.

• On "Quantization".

· Quantum mechanical:

discreteness of the spectrum of operators which describes physical quantities.

· Here:

scale invariance and

the uniqueness of the solution of the limiting equation (*).

		—— Summary ———	$\overline{}$
p = 6	\Rightarrow	J: scale-invariant	
	\Rightarrow	(u_n) : finite superposition of	
		rescaled entire solutions	
	\Rightarrow	(u_n) cannot converge.	

$\S3$ Asymptotic behavior of solutions of (P).

• Problem.

 $\Omega = \text{ball},$

a: radial, nonincreasing,

 $\partial u/\partial t = \Delta u + u^{p-1}$, $u(t) \not\rightarrow 0$ as $t \rightarrow \infty$.

· When p < 6, $u(t) \rightarrow a$ unique solution of (E): reasonable.

· When p = 6, we have no solution of (E). Hence " $u(t) \rightarrow$ solution" cannot occur.

— True problem here. —

What happens for time-global solutions of (P) with p = 6?

cf. There are many many papers concerning the case p < 6. The analysis of the critical case, p = 6, is a long-standing open problem.

• Known facts.

Assume
$$p = 6$$
. Then
 $\cdot \|u(t)\|_{\infty} \to \infty$ as $t \to \infty$.
 \cdot For some $t_n \to \infty$ and $\lambda_n^j \to \infty$,
 $u(t_n, x) \simeq \sum_{j=1}^m (\lambda_n^j)^{1/2} U(\lambda_n^j x)$ in H_0^1 , $\lambda_n^j \to \infty$.

Above results are far from satisfactory since

(1) It does not provide the detailed information about the behavior of norms $||u||_q := (\int_{\Omega} |u(x)|^q)^{1/q}$, i.e., the shape of the solution.

(2) It provides the information only for **some time sequence**.

Using the intersection comparison principle, we can verify that

Theorem (M.I.) $p = 6 \Rightarrow$ there exists $\lambda(t) \to \infty$ such that $u(t) \simeq \lambda(t)^{1/2} U(\lambda(t)x)$ in H_0^1 , moreover, $\|u(t)\|_q \to \begin{cases} \infty & \text{if } q > 6, \\ \alpha & \text{if } q = 6, \\ 0 & \text{if } q < 6 \end{cases}$

From this, we can see that

• The variational senerio actually controls such a infinite-time blow up.

• The role of the invariance norm is important. This norm plays a role of separatrix.

• The infinite-time blow up is totally different phenomena from the finite-time (i.e., ODE-like) blow up since in the latter blow up we have

 $||u(t)||_q \to \infty$ for any q.