
§1 Introduction.

• Problem (P).

(P)





∂u/∂t = ∆u + up−1 in Ω× (0, Tm),
u = 0 on ∂Ω× (0, Tm),
u ≥ 0 in Ω× (0, Tm),

u(0) = a in Ω.

where

· u = u(x, t),

· Ω ⊂ R3: ball,

· ∆ =
∑3

j=1 ∂2
xj

: Laplacian,

· p > 2,

· a: continuous and

a = 0 on ∂Ω,

· Tm = the maximal existence

time of u.

It is known that

Tm < ∞⇒ lim
t→Tm

‖u(t)‖∞ = ∞

where ‖u(t)‖∞ = maxx∈Ω |u(x, t)|: L∞-norm.



∂u/∂t = ∆u + up−1

:”Reaction-Diffusion equation.”

• Linear part.

∂u/∂t = ∆u (in Ω = R3) ⇒
u(x, t) = 1

(4πt)3/2

∫
dye−|y|2/4ta(y) for t > 0,

‖u(t)‖∞ ' 1
t3/2 as t →∞.

• Nonlinear part.

∂u/∂t = up−1 (note that this is ODE) ⇒
u(t) = ( β

T−t)
β, β = 1/(p− 2) for t < T ,

u(t) ' 1
(T−t)β →∞ as t ↑ T .

• Structure of (P).

∆u (diffusion term) up−1 (blow up term)
makes u flatten makes u peaking

Problem¶ ³

Behavior of solutions of (P) as t ↑?
µ ´



∂u/∂t = ∆u + up−1

• Known facts.

a u(t) control equation
small u(t) → 0, Tm = ∞ ut = ∆u

large u(t) →∞, Tm < ∞ ut = up−1

: well-known.

What happens when a: middle-size?

In general, it is expected that

u(t)→ stationary solution as t →∞.

Really?



§2 Variational problem and stationary
solutions.

• Stationary equation (E).

(E)





0 = ∆u + up−1 in Ω,
u = 0 on ∂Ω,
u ≥ 0 in Ω.

Result¶ ³

p < 6 ⇒ (E) has a (unique) solution.
p = 6 ⇒ (E) has no solution.

µ ´

What is 6?

• Variational formulation for (E).

J(u) =
1

2

∫
|∇u(x)|2dx− 1

p

∫
|u(x)|pdx

· Derivative of J at u in the direction v:
d

dt
J(u + tv)

∣∣∣∣
t=0

(= J ′(u)v)

=
∫

(∆u(x) + u(x)p−1)v(x)dx.

Hence

u: critical point of J (J ′(u) = 0)

m
u: solution of (E).



• Construction of the critical point of J.

The construction of solutions of (E):

step 1. Construction of a sequence (un) s.t.

“nearly critical point (solution)”.

step 2. Convergence of (un).

When p ≤ 6, step 1.: OK. For step 2.,

p < 6 ⇒ OK, p = 6 ⇒ NO.

What happens for (un) when p = 6?

• Scale invariance of J.

Let λ > 0 and gλu(x) := λ1/2u(λx).

Then
∫ |∇gλu|2 =

∫ |∇u|2. Moreover,

∫ |gλu|p =
∫ |u|p ⇔ p = 6.

p = 6 is the only number s.t.

J is invariant under the scaling (gλ),

i.e., J(u) = J(gλu), ∀λ > 0, ∀u.



• Expression of the sequence consists of nearly

critical point of J when p = 6.

· U(x) = C
(1+|x|2)1/2: sol. of

0 = ∆u + u6−1 in R3. (∗)

· Rescale U so that gλU looks like

Then by the scale invariance,

gλU satisfies (*) and nearly only defined on Ω.

⇒ gλU is a nearly c. point of J.

· Analyzing these facts further, we obtain

Expression of the nearly c. point¶ ³

(un) is a sequence of nearly c. point of J ⇔

un '
m∑

j=1

g
λ

j
n
U, λj

n →∞

for some natural number m.
µ ´

i.e., some kinds of “quantization” occurs.



• On “Quantization”.

· Quantum mechanical:

discreteness of the spectrum of operators which

describes physical quantities.

· Here:

scale invariance and

the uniqueness of the solution of the limiting

equation (*).

Summary¶ ³

p = 6 ⇒ J: scale-invariant
⇒ (un): finite superposition of

rescaled entire solutions
⇒ (un) cannot converge.

µ ´



§3 Asymptotic behavior of solutions
of (P).

• Problem.

Ω = ball,

a: radial, nonincreasing,

∂u/∂t = ∆u + up−1, u(t) 6→ 0 as t →∞.

· When p < 6, u(t) → a unique solution of (E):

reasonable.

· When p = 6, we have no solution of (E). Hence

“u(t) → solution” cannot occur.

True problem here.¶ ³

What happens for time-global solutions of (P)

with p = 6?
µ ´

cf. There are many many papers concerning

the case p < 6. The analysis of the critical case,

p = 6, is a long-standing open problem.



• Known facts.

Assume p = 6. Then

· ‖u(t)‖∞ →∞ as t →∞.

· For some tn →∞ and λ
j
n →∞,

u(tn, x) '
m∑

j=1

(λj
n)

1/2U(λj
nx) in H1

0 , λj
n →∞.

Above results are far from satisfactory since

(1) It does not provide the detailed information

about the behavior of norms ‖u‖q := (
∫
Ω |u(x)|q)1/q,

i.e., the shape of the solution.

(2) It provides the information only for some

time sequence.



Using the intersection comparison principle, we

can verify that

Theorem (M.I.)¶ ³

p = 6 ⇒ there exists λ(t) →∞ such that

u(t) ' λ(t)1/2U(λ(t)x) in H1
0 ,

moreover,

‖u(t)‖q →




∞ if q > 6,
α if q = 6,
0 if q < 6

µ ´

From this, we can see that

· The variational senerio actually controls such

a infinite-time blow up.

· The role of the invariance norm is important.

This norm plays a role of separatrix.

· The infinite-time blow up is totally different

phenomena from the finite-time (i.e., ODE-like)

blow up since in the latter blow up we have

‖u(t)‖q →∞ for any q.


