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The Standard Model

• The Standard Model:
◦ relativistic quantum renormalizable field theory;
◦ gauge groupSU(3)C × SU(2)L × U(1)R.

• Particle content:
◦ leptons:e, µ, τ ; νe, νµ, ντ .
◦ quarks:u, c, t; d, s, b.
◦ bosons:g, γ, Z, W ; H.

• All the particles but the Higgs bosonH have been found.

• As a matter of principle, every fact that exists in sciencesderivesfrom the Standard Model.

• The Standard Model, as we know it, can not bethefinal theory; gravity is not included.
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Experimental tests

• Collider tests:E = mc2 :
◦ produce new (heavy) particles by increasing the energy of the colliding objects
◦ LEP, Tevatron, LHC, ILC(?)

• Precision tests:∆t ∆E ∼ ~:
◦ quantum fluctuations lead to testable imprints.
◦ magnetic and dipole moments of elementary fermions, muon decay, atomic parity

violation, CP-violation, flavor violationµ → eγ.

• The SM has been tested through energies∼ 100 GeV or distances∼ 10−18 m.

• No sizable deviations from the Standard Model predictions found so far.

• Most of the facts that do not fit into the Standard Model come from

cosmology/astroparticle physics:
◦ dark matter;
◦ dark energy;
◦ baryon asymmetry;
◦ neutrino masses.

• To accomodate those facts, modifications of the Standard Model are required.
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Modifications of the Standard Model

• Empirical approach:
◦ minimal modifications to accomodateestablishedfacts;
◦ keeprenormalizabilityas the guiding principle for building the theory;

• Aesthetic approach: forget about the rules of the game in therenormalizable quantum field

theory – ask “Why?”
◦ Why is gravity so weak?MPlanck ≫ 1 TeV

◦ Why the Higgs boson mass is stable against radiative corrections?
◦ Why are neutrino masses so close to the dark energy scale?

• extra dimensions, little Higgs, Higgsless models, landscape, variations of the above .

• supersymmetric extensions of the SM.

• To find the Higgs boson and to search for beyond the Standard Model physics, the Large

Hadron Collider (LHC) is being built.
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The LHC will find something

• Solid argument: either the SM Higgs boson is found at the LHC or something unexpected

happens:
◦ If mH < 1 TeV, the LHC will see the Higgs;
◦ If mH > 1 TeV, the interaction of electroweak gauge bosons in the SM becomes

strong at around1 TeV.

• Less solid argument: hierarchy/naturallness problem.
◦ It is not naturalthat the SM with the light Higgs boson is a valid theory up to an

arbitrary large scale.
◦ Assume SM is only valid up to a cut-offΛ ∼ 10 TeV:

m2
H = m2

tree −
3λ2

t Λ2

8π2
+ ... = m2

tree − 100[200 GeV]2.

◦ To havem2
H ∼ (200 GeV)2, a tuning of about10−2 is required inm2

tree.

• The hierarchy/naturallness problem is solved in BSM modelsby introducing new forms of

matter with mass about few TeV→ such particles will be, generically, found at the LHC.
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The LHC

• The LHC parameters:
◦ proton beams
◦ collision energy14 TeV → ×7 Tevatron
◦ luminosity10 fb−1 → ×100 Tevatron
◦ Two major all purpose detectors: ATLAS and CMS.

• Increase in energy and luminosity leads tovery high ratesfor SM processes

Process σ (nb)≡ evts/s

Jets,ET > 0.1 (2) TeV 103 (10−4)

W± → eνe 20

cc̄, bb̄ 8 × 106, 5 × 105

tt̄ 0.8

• A machine with unique potential and unique challenges.
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The LHC: challenges

• Hadron collider: non-perturbative dynamics:
◦ Factorization theorems→ universalnon-perturbative input;
◦ Asymptotic freedom→ applicability of perturbation theory;

P1

P2

x1P1

x2P2

σ = D ⊗ σpert ⊗ F

◦ F – parton distribution function;

data;

◦ D – fragmentation models;data;

◦ σpert – hard scattering cross-section;

theory.

• Fixed order perturbation theory ofteninsufficient.
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The LHC: challenges

• All orders treatment of QCD – non-trivial:
◦ Perturbation theory→ shower event generators ;
◦ Shower event generators→ hadronization models;
◦ Hadronization models→ detector response simulation.
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Non-trivial interplay of many ingredients

may lead to puzzles:

◦ 1984 UA1 “discovery” of the top

quark withmtop = 40 ± 10 GeV.

◦ largeE⊥ jets at the Tevatron, Run I;

◦ B-meson production cross-section at

the Tevatron, Run I.

◦ NuTeV sin2 θW .

• A particular importantissue for the LHC is an accurate computation of hard multijet

processes (backgrounds to New Physics searches).
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The LHC: challenges

Meff =

P

jets
p⊥ + Emiss

⊥

• ALPGEN: exact matrix elements; correct hard emissions built in.

• PYTHIA: emulates hard emissions by producing large number of softer jets.

• PYTHIA underestimates the background significantly.

• Catani-Krauss-Kuhn-Webber procedure to combine shower event generators with exact

matrix elements.
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The LHC: rediscovering the Standard Model

• The first priorityof the two LHC collaborations is to test and verify their detector

performances using basic Standard Model processes:
◦ Z → l+l−, W → lν lepton energy scale; tracking efficiency;
◦ Z, W – parton distribution function, luminosity monitoring;MW .
◦ tt̄ – b-tagging, jet energy scale
◦ W/Z + jets, QCD jets – verify theoretical tools.
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Hunting the Higgs boson at the LHC

• Discovery of the Higgs boson is the most important goal of theLHC physics program:
◦ test the mechanism of EWSB
◦ find the last missing particle of the Standard Model

• Precision electroweak fits and direct bounds from LEP imply that the Higgs boson mass is

mH ∼ 100 − 200 GeV.

0

2

4

6

10 10
2

10
3

mH [GeV]

∆χ
2

Excluded Preliminary

∆αhad =∆α(5)

0.02804±0.00065
0.02784±0.00026

theory uncertainty

mW = 80.3827 − 0.0579 ln
mH

100
− 0.008 ln2 mH

100

−0.517
 

∆α
(5)
h

0.0280
− 1

!
+ 0.543

��mt

175

�2
− 1

�

−0.085

�
αs(mz)

0.118
− 1

�

.

Physics at the LHC: from Standard Model to new discoveries – p. 12/22



Hunting the Higgs boson at the LHC

• Higgs production processes and decay channels
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• The quality of the Higgs signal is determined by the relativemagnitude of the signal and

thebackground.

• Promising discovery channels
◦ pp → gg → H → γγ;
◦ pp → gg → H → ZZ → 4l;
◦ pp → WH → lν̄eγγ

◦ pp → gg → H → W+W− → l+l−νeν̄e.
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Hunting the Higgs boson at the LHC

• For the light Higgs boson, thegg → H → γγ is the most important channel. However:
◦ The background from prompt photon production is overwhelming;
◦ Excellent resolution on the photon energy is required;
◦ Experimental studies of the background in signal-free regions.
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Hunting the Higgs boson at the LHC

• The significance of the Higgs signalS/
√

B.
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ATLAS

FormH = 115 GeV, L = 10 fb−1:

H → γγ tt̄H(bb̄) qqH(ττ)

S 130 15 10

B 4300 45 10

S/
√

B 2 2.2 2.7

◦ H → γγ – electromagnetic calorimetry;

◦ tt̄H(bb̄) – efficientb-tagging;

◦ qqH(ττ) – efficient central jet veto.
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Is this really the Higgs boson?

• The Standard Model Higgs has to couple to matter and gauge fields in aunique way
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◦ TheHgg coupling counts the number of

ultra-heavy quarks:

H

t, T ′, ..

◦ QCD corrections∼ 100%; challenge to

theorists
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Searching for BSM physics

• When we search for New Physics, we do not know what we are loooking for.

• First, figure out that something is there; then, figure out what this is.

• Models↔ collider signatures.

• Many models but relatively few signatures
◦ New models↔ new signatures→ Important
◦ New models↔ old signatures→ Less important

• Signatures, generic and not:
◦ bump hunting (Z′, W ′, extra dimensions, technicolor);
◦ highp⊥ jets and missingE⊥ (SUSY).
◦ monojets (extra dimensions);
◦ long-lived new particles in the detector (split-SUSY).
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Bump hunting

• Many BSM models predict the existence of new resonances (newU(1) bosons, extra

dimensional theories, technicolor)
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◦ Techni-hadronsV V → ρT → V V → 4l are hard;

◦ Spin ofZ′ vs. RS gravitons can be determined;
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Jets + E
miss

⊥
: SUSY at the LHC

• In typical SUSY models, squark and gluino production cross-sections are large,∼ 10 pb.

• Decays of squarks and gluinos produce jets, leptons and missing energy.

• Heavy objects lead to larger values ofMeff =

P

p⊥ + Emiss
⊥

than in the SM.

• Mass scale of SUSY is determined from the position of the peakin Meff distribution.

• Beyond that, determining the masses SUSY particles and establishing their properties is

rather challenging.

LHC Point 5
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Jets + E
miss

⊥
: large extra dimensions

• The world may have more than3 + 1 dimensions:
◦ Large extra dimensions, warped extra dimensions, universal extra dimensions, etc.
◦ Models and phenomenology vary significantly; ranging from resonance-like

excitations to missing energy.

• Large extra dimensions: SM on the brane, gravity in the bulk.
◦ Natural scale for gravityMD ∼ 1 Tev;
◦ GN ∝ R−δM−2−δ

D ;
◦ δ > 2 − 3, MD > few × 100 GeV (cosmology, astroparticle, Tevatron).
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◦ Basic LHC signature:jet + Emiss
⊥

that originates from (multiple)

graviton emissiongg → G + jet.

◦ Backgrounds:Z(νν̄) + jet,

W (eν) + jets, etc.

◦ Reach:MD < 6 TeV, δ = 2 − 4.
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Long-lived gluinos: split-SUSY

• Split-SUSY scenario:
◦ all squarks have masses∼ 106 TeV;
◦ gauginos and the SM Higgs boson is at electroweak scale.

• New phenomenology – long-lived gluinos: lifetimes between10−12 sec to years.

• Signatures:
◦ Displayed decays;
◦ Delayed decays – events with beams off;
◦ Energy deposition in hadronic calorimeter;
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Conclusions

• The LHC opens up a new energy frontier whichmight be relevantfor most fundamental

physics questions of out time;

• The LHC will discover the Higgs boson within several years;

• The LHC will likely discover new forms of matter if their masses are within few TeV;

• The LHC will havea hard timein identifying the model→ the ILC?

• The LHC physics is complex and interveined; requires different expertise and support from

different components of particle physics community.
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