# Physics at the LHC: from Standard Model to new discoveries

Kirill Melnikov

University of Hawaii

May 2006

Sendai, June 2006

#### Outline

- Standard Model
- LHC
- Higgs boson at the LHC
- Beyond the Higgs boson
- Conclusion

#### The Standard Model

- The Standard Model:
  - relativistic quantum renormalizable field theory;
  - <sup>o</sup> gauge group  $SU(3)_C \times SU(2)_L \times U(1)_R$ .
- Particle content:
  - <sup>o</sup> leptons:  $e, \mu, \tau; \nu_e, \nu_\mu, \nu_\tau$ .
  - <sup> $\circ$ </sup> quarks: u, c, t; d, s, b.
  - <sup>o</sup> bosons:  $g, \gamma, Z, W$ ; H.
- All the particles but the Higgs boson *H* have been found.
- As a matter of principle, every fact that exists in sciences derives from the Standard Model.
- The Standard Model, as we know it, can not be the final theory; gravity is not included.

#### **Experimental tests**

- Collider tests:  $E = mc^2$  :
  - <sup>o</sup> produce new (heavy) particles by increasing the energy of the colliding objects
  - <sup>O</sup> LEP, Tevatron, LHC, ILC(?)
- Precision tests:  $\Delta t \ \Delta E \sim \hbar$ :
  - $^{\circ}$  quantum fluctuations lead to testable imprints.
  - $^{\circ}$  magnetic and dipole moments of elementary fermions, muon decay, atomic parity violation, CP-violation, flavor violation  $\mu \rightarrow e\gamma$ .
- The SM has been tested through energies  $\sim 100 \text{ GeV}$  or distances  $\sim 10^{-18} \text{ m}$ .
- No sizable deviations from the Standard Model predictions found so far.
- Most of the facts that do not fit into the Standard Model come from cosmology/astroparticle physics:
  - <sup>○</sup> dark matter;
  - $^{\circ}$  dark energy;
  - baryon asymmetry;
  - $^{\circ}$  neutrino masses.
- To accomodate those facts, modifications of the Standard Model are required.

#### Modifications of the Standard Model

- Empirical approach:
  - <sup>o</sup> minimal modifications to accomodate established facts;
  - keep renormalizability as the guiding principle for building the theory;
- Aesthetic approach: forget about the rules of the game in the renormalizable quantum field theory ask "Why?"
  - <sup> $\circ$ </sup> Why is gravity so weak?  $M_{\text{Planck}} \gg 1 \text{ TeV}$
  - <sup>o</sup> Why the Higgs boson mass is stable against radiative corrections?
  - <sup>o</sup> Why are neutrino masses so close to the dark energy scale?
- extra dimensions, little Higgs, Higgsless models, landscape, variations of the above .
- supersymmetric extensions of the SM.
- To find the Higgs boson and to search for beyond the Standard Model physics, the Large Hadron Collider (LHC) is being built.

#### The LHC will find something

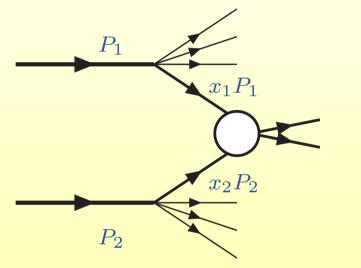
- Solid argument: either the SM Higgs boson is found at the LHC or something unexpected happens:
  - $^{\circ}$  If  $m_H < 1$  TeV, the LHC will see the Higgs;
  - <sup> $\circ$ </sup> If  $m_H > 1$  TeV, the interaction of electroweak gauge bosons in the SM becomes strong at around 1 TeV.
- Less solid argument: hierarchy/naturallness problem.
  - It is not natural that the SM with the light Higgs boson is a valid theory up to an arbitrary large scale.
  - $^{\circ}$  Assume SM is only valid up to a cut-off  $\Lambda \sim 10 \text{ TeV}$ :

$$m_H^2 = m_{\text{tree}}^2 - \frac{3\lambda_t^2 \Lambda^2}{8\pi^2} + \dots = m_{\text{tree}}^2 - 100[200 \text{ GeV}]^2.$$

 $^{\circ}$  To have  $m_H^2 \sim (200 \text{ GeV})^2$ , a tuning of about  $10^{-2}$  is required in  $m_{\text{tree}}^2$ .

 The hierarchy/naturallness problem is solved in BSM models by introducing new forms of matter with mass about few TeV → such particles will be, generically, found at the LHC.

#### The LHC


- The LHC parameters:
  - $^{\circ}$  proton beams
  - $^{\circ}$  collision energy 14 TeV  $\rightarrow \times 7$  Tevatron
  - ° luminosity 10 fb<sup>-1</sup> → ×100 Tevatron
  - <sup>O</sup> Two major all purpose detectors: ATLAS and CMS.
- Increase in energy and luminosity leads to very high rates for SM processes

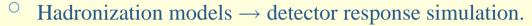
| Process                       | $\sigma$ (nb) $\equiv$ evts/s  |  |
|-------------------------------|--------------------------------|--|
| Jets, $E_T > 0.1$ (2) TeV     | $10^3 (10^{-4})$               |  |
| $W^{\pm} \rightarrow e \nu_e$ | 20                             |  |
| $car{c}, bar{b}$              | $8 \times 10^6, 5 \times 10^5$ |  |
| $t \overline{t}$              | 0.8                            |  |

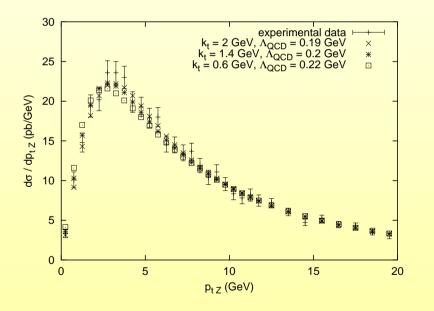
• A machine with unique potential and unique challenges.

#### The LHC: challenges

- Hadron collider: non-perturbative dynamics:
  - $^{\circ}$  Factorization theorems  $\rightarrow$  universal non-perturbative input;
  - $^{\circ}$  Asymptotic freedom  $\rightarrow$  applicability of perturbation theory;




$$\sigma = D \otimes \sigma_{\text{pert}} \otimes F$$

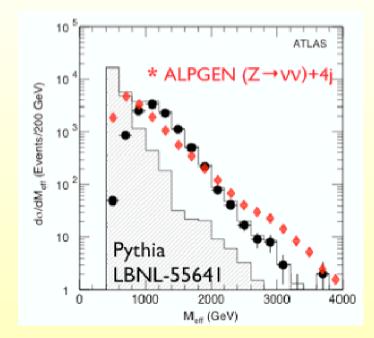

- *F* parton distribution function; data;
- $^{\circ}$  D fragmentation models; data;
- $^{\circ}$   $\sigma_{\rm pert}$  hard scattering cross-section; theory.

• Fixed order perturbation theory often insufficient.

#### The LHC: challenges

- All orders treatment of QCD non-trivial:
  - $^{\circ}$  Perturbation theory  $\rightarrow$  shower event generators ;
  - <sup> $\circ$ </sup> Shower event generators  $\rightarrow$  hadronization models;



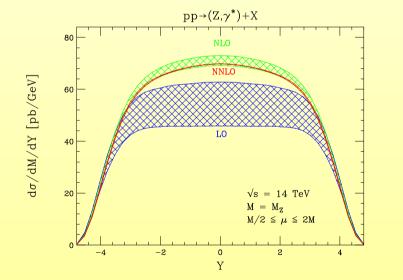


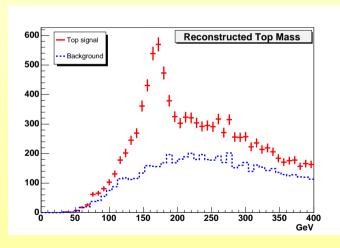

Non-trivial interplay of many ingredients may lead to puzzles:

- $^{\circ}$  1984 UA1 "discovery" of the top quark with  $m_{\rm top} = 40 \pm 10$  GeV.
- $^{\circ}$  large  $E_{\perp}$  jets at the Tevatron, Run I;
- B-meson production cross-section at the Tevatron, Run I.
- ° NuTeV  $\sin^2 \theta_W$ .

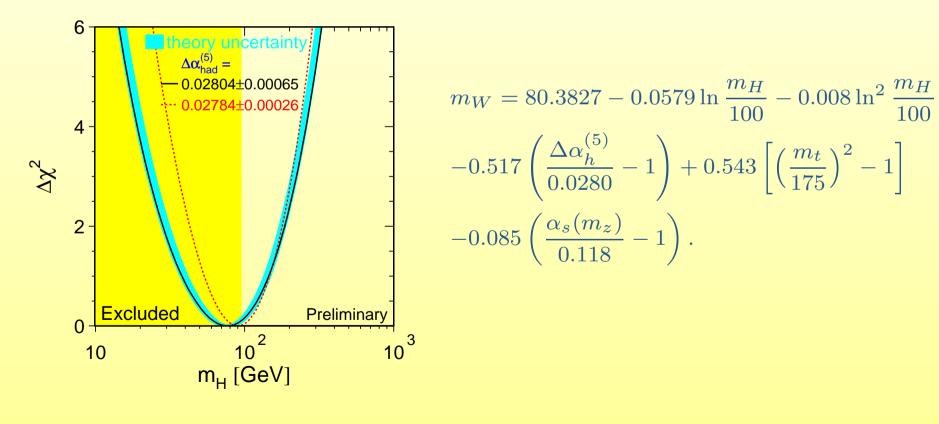
• A particular important issue for the LHC is an accurate computation of hard multijet processes (backgrounds to New Physics searches).

#### The LHC: challenges

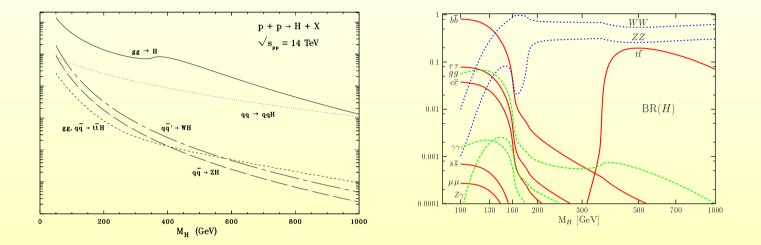




 $M_{\rm eff} = \sum_{\rm jets} p_{\perp} + E_{\perp}^{\rm miss}$ 

- ALPGEN: exact matrix elements; correct hard emissions built in.
- PYTHIA: emulates hard emissions by producing large number of softer jets.
- PYTHIA underestimates the background significantly.
- Catani-Krauss-Kuhn-Webber procedure to combine shower event generators with exact matrix elements.


#### The LHC: rediscovering the Standard Model

- The first priority of the two LHC collaborations is to test and verify their detector performances using basic Standard Model processes:
  - $^{\circ} Z \rightarrow l^+ l^-, W \rightarrow l\nu$  lepton energy scale; tracking efficiency;
  - $^{\circ}$  Z, W parton distribution function, luminosity monitoring;  $M_W$ .
  - $^{\circ}$   $t\bar{t}$  *b*-tagging, jet energy scale
  - $^{\circ}$  W/Z + jets, QCD jets verify theoretical tools.





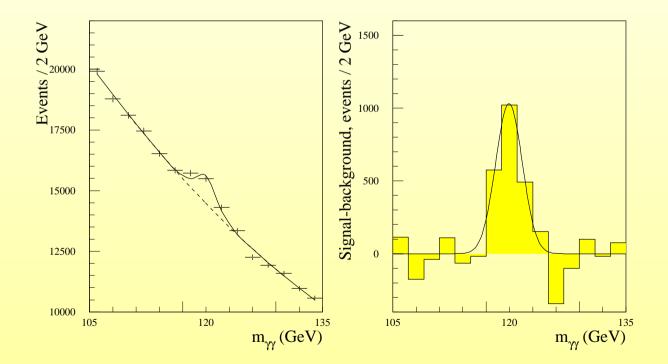

- Discovery of the Higgs boson is the most important goal of the LHC physics program:
  - $^{\circ}$  test the mechanism of EWSB
  - <sup>o</sup> find the last missing particle of the Standard Model
- Precision electroweak fits and direct bounds from LEP imply that the Higgs boson mass is  $m_H \sim 100 200 \text{ GeV}.$

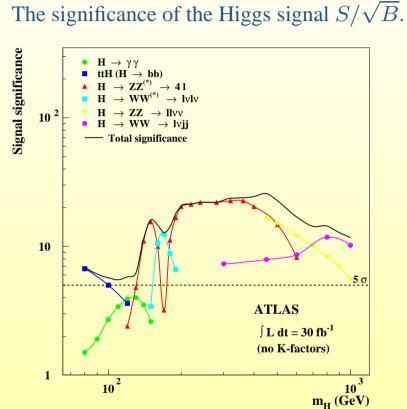


• Higgs production processes and decay channels



- The quality of the Higgs signal is determined by the relative magnitude of the signal and the background.
- Promising discovery channels


$$^{\circ} \quad pp \to gg \to H \to \gamma\gamma;$$


$$^{\circ} \quad pp \to gg \to H \to ZZ \to 4l;$$

$$^{\circ} \ pp \rightarrow WH \rightarrow l\bar{\nu}_e \gamma \gamma$$

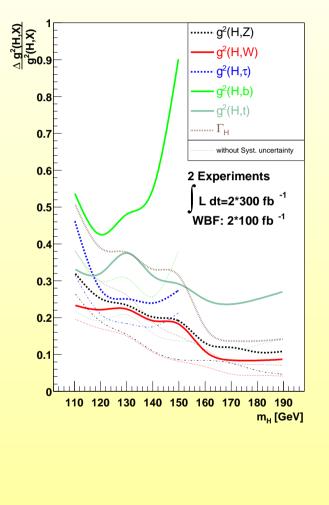
 $^{\circ} \quad pp \to gg \to H \to W^+W^- \to l^+l^-\nu_e\bar{\nu}_e.$ 

- For the light Higgs boson, the  $gg \to H \to \gamma\gamma$  is the most important channel. However:
  - <sup>o</sup> The background from prompt photon production is overwhelming;
  - $^{\circ}$  Excellent resolution on the photon energy is required;
  - <sup>o</sup> Experimental studies of the background in signal-free regions.

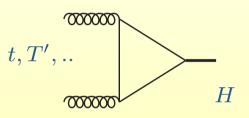




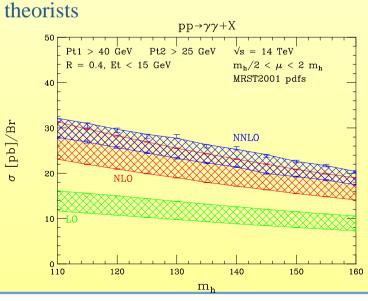
For  $m_H = 115 \text{ GeV}, L = 10 \text{ fb}^{-1}$ :


|              | $H  ightarrow \gamma \gamma$ | $t\bar{t}H(b\bar{b})$ | qqH(	au	au) |
|--------------|------------------------------|-----------------------|-------------|
| S            | 130                          | 15                    | 10          |
| В            | 4300                         | 45                    | 10          |
| $S/\sqrt{B}$ | 2                            | 2.2                   | 2.7         |

 $^{\circ}$   $H \rightarrow \gamma \gamma$  – electromagnetic calorimetry;


- $^{\circ}$   $t\bar{t}H(b\bar{b})$  efficient *b*-tagging;
- $^{\circ} qqH(\tau\tau)$  efficient central jet veto.

#### Is this really the Higgs boson?

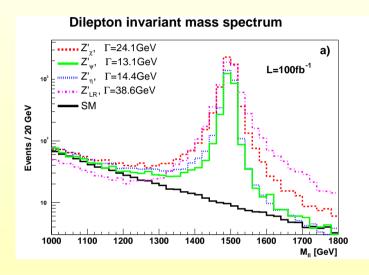

• The Standard Model Higgs has to couple to matter and gauge fields in a unique way

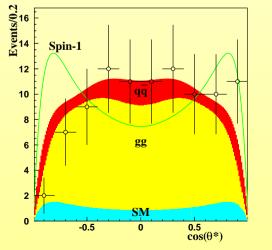


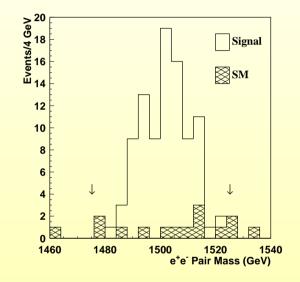
 The *Hgg* coupling counts the number of ultra-heavy quarks:



 $^{\circ}$  QCD corrections  $\sim 100\%$ ; challenge to



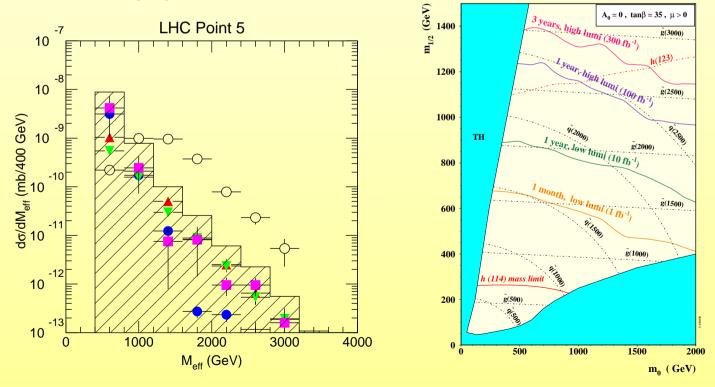


#### Searching for BSM physics


- When we search for New Physics, we do not know what we are loooking for.
- First, figure out that something is there; then, figure out what this is.
- Models  $\leftrightarrow$  collider signatures.
- Many models but relatively few signatures
  - <sup> $\circ$ </sup> New models  $\leftrightarrow$  new signatures  $\rightarrow$  Important
  - $^{\circ}$  New models  $\leftrightarrow$  old signatures  $\rightarrow$  Less important
- Signatures, generic and not:
  - <sup> $\circ$ </sup> bump hunting (Z', W', extra dimensions, technicolor);
  - $^{\circ}$  high  $p_{\perp}$  jets and missing  $E_{\perp}$  (SUSY).
  - <sup>o</sup> monojets (extra dimensions);
  - <sup>o</sup> long-lived new particles in the detector (split-SUSY).

#### **Bump hunting**

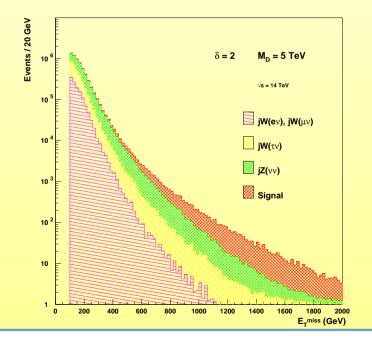
• Many BSM models predict the existence of new resonances (new U(1) bosons, extra dimensional theories, technicolor)








- $^{\circ}$  Techni-hadrons  $VV \rightarrow \rho^T \rightarrow VV \rightarrow 4l$  are hard;
- $^{\circ}$  Spin of Z' vs. RS gravitons can be determined;


## Jets + $E_{\perp}^{\text{miss}}$ : SUSY at the LHC

- In typical SUSY models, squark and gluino production cross-sections are large,  $\sim 10$  pb.
- Decays of squarks and gluinos produce jets, leptons and missing energy.
- Heavy objects lead to larger values of  $M_{\text{eff}} = \sum p_{\perp} + E_{\perp}^{\text{miss}}$  than in the SM.
- Mass scale of SUSY is determined from the position of the peak in  $M_{\text{eff}}$  distribution.
- Beyond that, determining the masses SUSY particles and establishing their properties is rather challenging.



### Jets + $E_{\perp}^{\text{miss}}$ : large extra dimensions

- The world may have more than 3 + 1 dimensions:
  - <sup>o</sup> Large extra dimensions, warped extra dimensions, universal extra dimensions, etc.
  - Models and phenomenology vary significantly; ranging from resonance-like excitations to missing energy.
- Large extra dimensions: SM on the brane, gravity in the bulk.
  - $^{\circ}$  Natural scale for gravity  $M_D \sim 1$  Tev;
  - $^{\circ} \quad G_N \propto R^{-\delta} M_D^{-2-\delta};$
  - $^{\circ}$   $\delta > 2 3$ ,  $M_D > \text{few} \times 100 \text{ GeV}$  (cosmology, astroparticle, Tevatron).



- <sup>○</sup> Basic LHC signature: jet +  $E_{\perp}^{\text{miss}}$ that originates from (multiple) graviton emission  $gg \rightarrow G + \text{jet}$ .
- <sup>o</sup> Backgrounds:  $Z(\nu\bar{\nu}) + \text{jet}$ ,  $W(e\nu) + \text{jets}$ , etc.
- <sup>o</sup> Reach:  $M_D < 6$  TeV,  $\delta = 2 4$ .

#### Long-lived gluinos: split-SUSY

- Split-SUSY scenario:
  - $^{\circ}$  all squarks have masses  $\sim 10^6 \text{ TeV}$ ;
  - $^{\circ}$  gauginos and the SM Higgs boson is at electroweak scale.
- New phenomenology long-lived gluinos: lifetimes between  $10^{-12}$  sec to years.
- Signatures:
  - <sup>O</sup> Displayed decays;
  - $^{\circ}$  Delayed decays events with beams off;
  - <sup>o</sup> Energy deposition in hadronic calorimeter;

#### Conclusions

- The LHC opens up a new energy frontier which might be relevant for most fundamental physics questions of out time;
- The LHC will discover the Higgs boson within several years;
- The LHC will likely discover new forms of matter if their masses are within few TeV;
- The LHC will have a hard time in identifying the model  $\rightarrow$  the ILC?
- The LHC physics is complex and interveined; requires different expertise and support from different components of particle physics community.