

Getting Ready for the LHC: Accelerator, Detectos and Physics

Reisaburo Tanaka (Okayama University)

Exploring New Science by Bridging Particle-Matter Hierarchy The 4th COE Symposium, Tohoku University June 28-30, 2006

Contents

- 1. Introduction
- 2. LHC Accelerator and ATLAS Detector
- 3. Supersymmetry
- 4. Extra-dimension
- 5. Summary

putting emphases on experimental aspects...

1. Introduction

Brief History of Particle Physics

David Gross David Politzer Frank Wilczek

1970's

Sheldon Glashow Abdus Salam Steven Weinberg

- Rise of the Standard Model theory (Electroweak and QCD)
- Discovery of J/ Ψ (charm quark) in 1974, November Revolution
- Discovery of τ lepton, bottom quark, gluon 1980's
- Discovery of weak W^{\pm} and Z^0 bosons 1990's
- Discovery of top quark
- N_v=3, great success of the Standard Model (gauge theory)
- Discovery of neutrino oscillation

Physics in the 21st century ?

- Find the Higgs particle (last Standard Model particle unobserved)
- Find the TeV scale new physics. → New Revolution ?

Carlo Rubbia Simon van der Meer

Gerardus 't Hooft Martinus Veltman

1

Never trust a theorist.

Elementary Particles

Particles

High Energy Particle Physics

• Hierarchy problem and Naturalness

• Fine tuning:
$$\frac{M_Z^2}{\Lambda^2} \rightarrow \frac{M_Z^2}{M_{GUT}^2} \approx 10^{-28}$$

- \rightarrow There must be new physics in TeV energy range.
 - Unitarity violation without Higgs above $1 \text{TeV} (W_L W_L \text{ scattering})$
 - Prediction of light Higgs with LEP data (M_H<207 GeV@95%C.L).
 - (sub-)TeV WIMP dark matter (SUSY-LSP, axion, \tilde{v}_R etc.)

LHC proves directly TeV energy range for the first time!

- Origin of the electroweak symmetry breaking (EWSB)
 - Higgs, compositeness, Higgsless, others?
- Unification with quantum gravity, Space-Time structure
 - (super) string theory

Standard Model Lagrangian

R. Barbieri, hep-ph/0410223

$$\begin{aligned} \mathcal{L} &= -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + i\bar{\psi}D\psi \\ &+ \psi_i \lambda_{ij} \psi_j h + h.c. \\ &+ |D_{\mu}h|^2 - V(h) \\ &+ \frac{1}{M} L_i \lambda^{\nu}_{ij} L_j h^2 \text{ or } L_i \lambda^{\nu}_{ij} N_j \end{aligned}$$

The gauge sector LEP, SLC, Tevatron The flavor sector B factories The EWSB sector LHC, ILC(CLIC) The v-mass sector v factories

Experiments

Physics at LHC - main goals for energy frontier machine1) Probe the origin of the ElectroWeak Symmetry Breaking (EWSB)2) Search for new physics beyond the Standard Model

Electroweak Symmetry Breaking (EWSB)

Extended Gauge Symmetry

Little Higgs, Higgsless, Left-Right Symmetric Model Higgs-Gauge Unification

Exotics: Compositeness, Lepto-quarks, Monopole ...

CERN

Conseil Européen pour la Recherche Nucléaire(1954~) known also as European Laboratory for Particle Physics

- 20 European Member States
- >2500 staff, >6000 users.

Japan became an Observer State in 1995.

Tim Berners-Lee invented the World-Wide Web.

f_i: PDF(Parton Distribution Function)

Energy Frontier Accelerators

Accelerator Technology

LHC Progress

1232 SC Dipole Magnets (8.36Tesla, 15m length, 35tonne) installation will finish in March 2007.

LHC Start-up Scenario

Schedule (CERN Council, June 23, 2006)

Oct 2006	Last magnet delivery
UCI. 2006	- Last magnet delivery
Dec. 2006	 Conclude magnet testing
Mar. 2007	- The last magnet installation
Aug. 2007	- Machine closure ready for commissioning
Nov. 2007	 2 months commissioning@0.9TeV
winter	 Commissioning without beam

Spring 2008 - First Physics RUN@14TeV !

Data collection will continue until a pre-determined amount of data has been accumulated, allowing the experimental collaborations to announce their first results.

The ATLAS Collaboration

35 nations 158 institutions ~1650 scientists

From Japan 15 institutions (10%) ~60 scientists (5%) Share 32/468 MCHF (7%)

Albany, Alberta, NIKHEF Amsterdam, Ankara, LAPP Annecy, Argonne NL, Arizona, UT Arlington, Athens, NTU Athens, Baku, IFAE Barcelona, Belgrade, Bergen, Berkeley LBL and UC, Bern, Birmingham, Bologna, Bonn, Boston, Brandeis, Bratislava/SAS Kosice, Brookhaven NL, Buenos Aires, Bucharest, Cambridge, Carleton, Casablanca/Rabat, CERN, Chinese Cluster, Chicago, Clermont-Ferrand, Columbia, NBI Copenhagen, Cosenza, INP Cracow, FPNT Cracow, Dortmund, TU Dresden, JINR Dubna, Duke, Frascati, Freiburg, Geneva, Genoa, Giessen, Glasgow, LPSC Grenoble, Technion Haifa, Hampton, Harvard, Heidelberg, Hiroshima, Hiroshima IT, Indiana, Innsbruck, Iowa SU, Irvine UC, Istanbul Bogazici, KEK, Kobe, Kyoto, Kyoto UE, Lancaster, UN La Plata, Lecce, Lisbon LIP, Liverpool, Ljubljana, QMW London, RHBNC London, UC London, Lund, UA Madrid, Mainz, Manchester, Mannheim, CPPM Marseille, Massachusetts, MIT, Melbourne, Michigan, Michigan SU, Milano, Minsk NAS, Minsk NCPHEP, Montreal, McGill Montreal, FIAN Moscow, ITEP Moscow, MEPhl Moscow, MSU Moscow, Munich LMU, MPI Munich, Nagasaki IAS, Naples, Naruto UE, New Mexico, Nijmegen, BINP Novosibirsk, Ohio SU, Okayama, Oklahoma, Oklahoma SU, Oregon, LAL Orsay, Osaka, Oslo, Oxford, Paris VI and VII, Pavia, Pennsylvania, Pisa, Pittsburgh, CAS Prague, CU Prague, TU Prague, IHEP Protvino, Ritsumeikan, UFRJ Rio de Janeiro, Rochester, Rome I, Rome II, Rome III, Rutherford Appleton Laboratory, DAPNIA Saclay, Santa Cruz UC, Sheffield, Shinshu, Siegen, Simon Fraser Burnaby, Southern Methodist Dallas, NPI Petersburg, Stockholm, KTH Stockholm, Stony Brook, Sydney, AS Taipei, Tbilisi, Tel Aviv, Thessaloniki, Tokyo ICEPP, Tokyo MU, Toronto, TRIUMF, Tsukuba, Tufts, Udine, Uppsala, Urbana UI, Valencia, UBC Vancouver, Victoria, Washington, Weizmann Rehovot, Wisconsin, Wuppertal, Yale, Yerevan

The ATLAS Detector Nov.2005

SCT(SemiConductor Tracker) barrel cylinders insertion into TRT(Transition Radiation Tracker) Feb.17, 2006

8.

Experimental physicist's daily life

SCT and TRT barrel test

First cosmic events in SCT+TRT

May 2006

CMS (Compact Muon Spectrometer)

Event at LHC

A simulated event in ATLAS (CMS) $H \rightarrow ZZ \rightarrow 4\mu$

≈ 23 overlápping minimum bias events / Beam Crossing
 ≈ 1900 charged + 1600 neutral particles / Beam Crossing

3. Supersymmetry

Extended Poincaré

With SUSY, infinities disappear:

(as long as M(J=1/2) = M(J=1))

Indirect evidence of SUSY ?

U. Amaldi, W. de Boer, H.Fürstenau, Phys.Lett.B260(1991)447-455

SUSY particle production at LHC

Large cross section via strong interaction

 $\tilde{q}\tilde{q},\,\tilde{q}\tilde{g},\,\tilde{g}\tilde{g}$

W

 $\sigma \approx 3$ pb for m(\tilde{q}, \tilde{g}) = 1 TeV

 \Rightarrow 100 events/day@10³³ cm⁻²s⁻¹

Easy discovery M~1TeV within 1 month?

 $\widetilde{\chi}_{1}^{0}$

a

W

$$M_{SUSY} = min(m(\tilde{q}), m(\tilde{g}))$$

20% accuracy (L=10fb⁻¹, mSUGRA) Missing E_{τ} is important (calibrate with $Z \rightarrow I/+$ jets)

3 isolated leptons

- + 2 b-jets
- + 4 jets
- + E^{miss}

SUSY event topology (Gravity- mediation + R-parity)

Gluino/squark are produced copiously, **"Cascade decay"** follows after.

- (1) E_T^{miss} should be controlled in multi-jets topology (N>=4).
- (2) High Pt multi-jets are important to estimate SM background contributions and SUSY reconstruction.

SUSY inclusive search

Missing E_T has excellent power to distinguish signal from SM background.

* background is generated by Alpgen MC.

Discovery Potential

- Only statistical error is included.
- Backgound is estimated by Alpgen.
- 0-lepton mode : More statistics is available.
- I-lepton mode : Relatively smaller background uncertainty. Major background is tt(+njets) is comparatively predictable.

N.Kanaya (Kobe)

Background : Alpgen

Mass Reconstruction kinematical endpoint

B.C. Allanach et al., JHEP 0009(2000)004

$$M_{\ell\ell}^{\max} = m(\tilde{\chi}_2^0) \sqrt{1 - \left(\frac{m(\tilde{\ell}_R^{\pm})}{m(\tilde{\chi}_2^0)}\right)^2} \sqrt{1 - \left(\frac{m(\tilde{\chi}_1^0)}{m(\tilde{\ell}_R^{\pm})}\right)^2}$$

- 1. Generally under-constrained. Determine mass with help of models.
- 2. Can determine model independently if 2-body decay chain continues 3 times.
- 3. Large $\tan \beta$ means more cascade and τ , b.
- 4. Strong model dependence.
- 5. Mass uncertainty mostly from LSP's momentum.
- 6. Determination of spin or Br are difficult.

LHC - Higgs, squark/gluino

Testing the underlying theory ... not trivial ...

Determination of SUSY model parametres

C.G. Lester, M.A. Parker, M.J. White, JHEP 0601(2006)080

• SUSY "inverse map" LHC signatures \rightarrow theoretical models

N. Arkani-Hamed et al., hep-ph/0512190

15 dimensional parametrization

1808 LHC observables

4. Extra-dimension

- the only theoretical approach towards a quantum description of gravity: consistency of quantum mechanics and general relativity
- includes supersymmetry
- the extra dimensions assumed to be compactified.
 - initially the assumption was that compactification radius was order of M_{PL}^{-1}
 - then it was realized that this could be as large as a millimeter !
- 3 models studied in some detail (there are more !):
 - 1. ADD scenario
 - 2. Randall-Sundrum (RS) model
 - 3. Universal Extra Dimension (KK)

ADD

ADD

- Large flat compactified extra dimensions
- \Rightarrow conjecture:
- SM particles localized in 4D brane
- gravity propagates in the bulk of higher dimension

$$M_{Pl_{(4)}}^{2} = M_{Pl_{(4+\delta)}}^{\delta+2} R_{C}^{\delta} \equiv M_{D}^{\delta+2} R_{C}^{\delta}$$

δ	M_D^{max} (TeV)	M_D^{max} (TeV)	M_D^{min}
	LL, 30fb^{-1}	HL, 100 fb ^{-1}	(TeV)
2	7.7	9.1	~ 4
3	6.2	7.0	~ 4.5
4	5.2	6.0	~ 5

Uncertainty in σ (*Z*+*jets*) will lower the reach Reach in M_D for γG

δ	M_D^{max} (TeV)	M_D^{min}
	HL, 100 fb $^{-1}$	(TeV)
2	4	~ 3.5

Ex. Direct Graviton production at LHC

L. Vacavant, I. Hinchliffe, J.Phys. G27(2001)1839

L

KK graviton excitations G^(k)

- scale Λ_{π}
- coupling & width determined by:
 c = k/M_{Pl}
- 0.01 < k/M_{Pl} < 0.1
- mass spectrum: $m_n = k x_n \exp(-k\pi r_c)$

Golden channel: $G^{(1)} \rightarrow e^+e^$ spin-2 could be determined (spin-1 ruled out) with 90% CL up to graviton mass of 1720 GeV.

B.C. Allanach, et al., JHEP09(2000)019, ibid.12(2002)039

CMS full simulation study

C. Collard and M.C. Lemaire Eur.Phys.J.C40N5 (2005) 15-21

Black Hole

Gravity Scale ~ TeV

Parton collision at d < Schwarzschild radius R_s

 \rightarrow Black Hole formation

Very large cross section $R_{\rm S} = \frac{1}{\sqrt{\pi}M_P} \left[\frac{M_{\rm BH}}{M_P} \left(\frac{8\Gamma(\frac{n+3}{2})}{n+2}\right)\right]^{\frac{1}{1+n}}$

Parton invariant mass M_{BH}(Black Hole mass)

J.Tanaka et al. Eur.Phys.J.C41(2005) 19-33 C.M.Harris et al. JHEP 0505(2005) 053

main phase ? Black body radiation

- = Hawking radiation or evaporation
- + 'Grey-body' effects (Herwig)
- + Time variation of Hawking temperature emission of particles
 - high multiplicity (a lot of jets)
 - "democratic" emission
 - spherical distribution

Drell-Yan di-leptons

Model independent study

- New gauge bosons: Z'
- Little Higgs: A_H, Z_H
- Large Extra-Dimension(ADD): G^(KK)
- Randall-Sundrum: G^(K)
- ...

Detector Commissioning and Physics

LHC Luminosity Profile

L = 2×10^{33} L = 10^{34} SLHC: L = 10^{35} (cm⁻²s⁻¹)

44

Michel Della Negra

5. Summary

- Discovery first !
- LHC is capable to find new particles (SUSY, ED, Z' etc.) up to 2-3 TeV (up to ~10TeV with interference effect).
- Model discrimination / parametre determination under study.
- Experimental issues: commissioning/calibration
- Needs to understand SM bkg from data and tuned MC.
- Tools: t, b, W/Z and even Higgs!

- We do hope major breakthrough in HEP (SUSY, ED etc.)
- Important decision in 2010 about HEP's future...

backup

History of hadron collider

Livingston plot

LHC Upgrades

CERN Council Strategy Group Open Symposium 2006 January 30 - February 1, 2006 (*LAL - Orsay, France*)

http://events.lal.in2p3.fr/conferences/Symposium06/

Luminosity	parameter	symbol	nominal	ultimate	shorter bunch	longer bunch
Luminosity	no of bunches	n _b	2808	2808	5616	936
Upgrade	proton per bunch	N _b [10 ¹¹]	1.15	1.7	1.7	6.0
(SLHC)	bunch spacing	∆t _{sep} [ns]	25	25	12.5	75
	average current	I [A]	0.58	0.86	1.72	1.0
	normalized emittance	ε _n [μm]	3.75	3.75	3.75	3.75
towards	longit. profile		Gaussia n	Gaussian	Gaussian	flat
$1 - 1035 \text{ cm}^{-2} \text{ c}^{-1}$	rms bunch length	σ _z [cm]	7.55	7.55	3.78	14.4
$L = 10^{\circ\circ}CIII = 5^{\circ}$	ß* at IP1&IP5	ß* [m]	0.55	0.50	0.25	0.25
	full crossing angle	θ _c [µrad]	285	315	445	430
<u>Physics</u>	Piwinski parameter	$\theta_{c} \sigma_{z}^{\prime} / (2\sigma^{*})$	0.64	0.75	0.75	2.8
20-30% increase	peak luminosity	L [10 ³⁴ cm ⁻	1.0	2.3	9.2	8.9
in discovery potent	al	² S ⁻¹]	40		00	540
Better stat. precsio	Crossing		19	44	88	510
P.Raimondi	luminous region length	σ _{lum} [mm]	44.9	42.8	21.8	36.2 48

LHC Luminosity Upgrade: tentative milestones

accelerator	WorkPackage	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	after 2015
LHC Main Ring	Accelerator Physics											
	High Field Superconductors											1
	High Field Magnets											
	Magnetic Measurements											
	Cryostats											
	Cryogenics: IR magnets & RF											
	RF and feedback											
	Collimation & Machine Protection											
	Beam Instrumentation											
	Power converters											
SPS	SPS kickers											
	T entative Milestones	Beam-beam compensation test at RHIC	SPS crystal collimation test	LHC collimation tests	LHC collimation tests	Install phase 2 collimation	LHC tests: collimation & beam-beam			Install new SPS kickers	new IR magnets and RF system	
	Other Tentative Milestones	Crab cavity test at KEKB	Low-noise crab cavity test at RHIC	LHC Upgrade Conceptual Design Report		LHC Upgrade Technical Design Report	Nominal LHC luminosity 10^34			Ultimate LHC lum inosity 2.3x10^34	beam-beam compensation	Doubleultimate LHC luminosity 4.6x10^34

Reference Design Report

R&D - sœnarios & models	
specifications & prototypes	
construction & testing	
installation & commissioning	

Reference LHC Upgrade scenario: peak luminosity 4.6x10^34/(cm^2sec) Integrated luminosity 3 x nominal ~ 200/(fb*year) assuming 10 h turn around time new superconducting IR magnets for beta*=0.25 m phase 2 collimation and new SPS kickers needed to attain ultimate LHC beam intensity of 0.86 A beam-beam compensation may be necessary to attain or exceed ultimate performance

new superconducting RF system: for bunch shortening or Crab cavities

hardware for nominal LHC performance (cryogenics, dilution kickers, etc) not considered as LHC upgrade

R&D for further luminosity upgrade (intensity beyond ultimate) is recommended: see Injectors Upgrade

LHC Energy Upgrade (DLHC)

- $E_b=7 \text{ TeV} \rightarrow 14 \text{ TeV}$
- Physics Motivation Eur.Phys.J c39 (2005) 293-333
 - Higgs self-coupling $\sim \lambda v$ determination with 20-30% accuracy

unprecedented dipole field

- > 17 Tesla
- Conductor options;
 NbTi, Nb₃Sn, Nb₃Al(KEK)
- ←15-20 year program ?

3. Higgs

Precision measurements at LHC

 ΔM_{top}

 ΔM_{W}

LHC

1 GeV

LHC

10 MeV

Very challenging !

Limit on the Higgs mass

MSSM Higgs discovery potential

5 Higgs bosons h,H,A,H $^{\pm}$

Descrive m_A and $\tan\beta$ at tree level.

Larege bbH/A coupling at large tanß H/A \rightarrow $\tau\tau$, $\mu\mu$, bb

 $\mu\mu$ channel is important at the beginning of LHC

: Commissioning $\mu\mu$ < $\tau\tau$ < bb

Can observe charged Higgs via $gb \rightarrow tH^{-}$ at $tan\beta > 10$

Cover whole $(m_A, \tan\beta)$ plane for MSSM Higgs with L=30fb⁻¹ data

gsless ModeL

C. Csáki *et al.,* Phys.Rev.**D69**(2004)055006, Phys.Rev.Lett.**92**(2004)101802

- Gauge group in 5D : $SU(2)_{L} \times SU(2)_{R} \times U(1)$
- Different boundaries conditions on branes break SU(2)×U(1) to U(1) : No Higgs needed.
- Z and Z' are KK excitations of the neutral gauge field.
- but strong constraints from EW precision data ...

Collider phenomenology:

H. Davoudiasl *et al.*,Phys.Rev.**D70**(2004)015006 T.G. Rizzo, hep-ph/0405094 Líttle Híggs

Higgs is a pseudo-Goldstone boson from global symmetry breaking.

- Higgs acquires a mass radiatively at the EW scale v.
- → quadratic divergences absent at one-loop level.

Goldstone bosons

Heavy Gauge Bosons $W^{\pm}_{H}, Z_{H}, \gamma_{H} \sim 1 \text{ TeV}$ Heavy Top quark $T \sim 1 \text{ TeV}$ Triplet Higgs

$$\phi^{\pm\pm}, \phi^{\pm}, \phi^{0} \sim 10 \text{ TeV}$$

N.Arkani-Hamed *et al.,* Phys.Lett.**B513**(2001)232 JHEP**07**(2002)034, *ibid.* **08**(2002)021 Review:

M. Schmaltz, Nucl.Phys.B(Proc.Suppl.)**117**(2003)40 F. del Aguila *et al.*, Acta Phys.Polon.**B35**(2004)2767

Little Higgs signal at LHC

G. Azuelos et al., hep-ph/0402037, Eur.Phys.J.C39S2(2005)13-244

Reach $M_T \sim 1$ (2) TeV for $x_{\lambda} = 1$ (2).