超新星起源プレソーラーグレインの Si同位体比の再現

Reproduction of Si Isotopic Ratios of Presolar Grains from Supernovae

Takashi YOSHIDA (天文学専攻COEフェロー)

平成16年度21世紀COEプログラムシンポジウム 「物質階層融合科学の構築」 2005年3月4日 東北大学川内キャンパス・マルチメディア教育情報棟

Presolar Grains

Presolar graphite grain (Lodders & Amari, 2004)

Presolar Grains

(Zinner, 1997)

Presolar Grains

Isotopic Ratios of Presolar Grains Isotopic ratios of Silicon Carbide presolar grains

Data from Amari et al. (2001a, 2001b, 2001c), Hoppe et al. (1996, 1997, 2000), Lin et al. (2002)

Presolar Grains from Supernovae

Data from Amari et al. (2001a, 2001b, 2001c), Hoppe et al. (1996, 1997, 2000), Lin et al. (2002)

Purpose of the Present Study

Subtypes (Lin et al., 2002, etc) \rightarrow X1: δ^{29} Si/ δ^{30} Si ~ 0.7 X2: δ^{29} Si/ δ^{30} Si ~ 1.2

Models of Supernova Nucleosynthesis and Mixing reproduce *only* X2 signature

Supernova models are limited. Travaglio et al. (1999), Hoppe et al. (2000) Yoshida & Hashimoto (2004)

Purpose

We investigate the range of Si isotopic ratios of supernova ejecta with different progenitor masses.
 → Reproduction of X1 δ²⁹Si/²⁸Si > δ³⁰Si/²⁸Si

SiC X: Nittler et al. (1996), Hoppe et al. (2000), Lin et al. (2002), Besmehn & Hoppe (2003) Low density graphite: Amari et al. (1995)

Models of Supernova Nucleosynthesis & Mixing

Supernova models

3.3, 4.0, 8.0 M_{\odot} He stars (13, 15, 25 M_{\odot} ZAMS) Supernova: $E=1\times10^{51}$ ergs (Nomoto & Hashimoto, 1988) (Shigeyama et al., 1992) Hypernova: $E=1\times10^{52}$ ergs (8.0 M_{\odot} He star)

Postprocessing nucleosynthesis (Yoshida & Hashimoto, 2004)

Four layer mixing

Supernova ejecta are divided into seven layers.

→ Ni, Si/S, O/Si, O/Ne, (C/O or O/C), He/C, He/N

Four layer mixtures Ni, Si/S, He/C, He/N

4.0 *M*_☉ Supernova

The mixtures of Ni, Si/S, He/C, He/N layers; *n*(C)/*n*(O)=1 *y*(Ni-layer)/*y*(Si/S-layer): parameter

• Mixtures of 3.3, 4.0 M_{\odot} supernova models X1 signature $\delta^{29}Si/^{28}Si > \delta^{30}Si/^{28}Si$

The mixtures of Ni, Si/S, He/C, He/N layers; n(C)/n(O)=1• 8.0, 6.0 M_{\odot} Supernova $X2: \delta^{29}Si/^{28}Si < \delta^{30}Si/^{28}Si$ • 8.0 M_{\odot} Hypernova $X1: \delta^{29}Si/^{28}Si > \delta^{30}Si/^{28}Si$

Si Isotopic Ratios in Layers of the Ejecta

• Ni layer of 3.3, 4.0 M_{\odot} supernovae &, 8 M_{\odot} hypernova $\rightarrow \delta^{29}$ Si/²⁸Si > δ^{30} Si/²⁸Si

 The Si ratios depend on the temperature decrease rate Less massive supernovae —>Fast temperature decrease Massive supernovae —>Slow temperature decrease

Effect of Supernova Neutrinos

3.3 M_o Supernova

• Ni layer \rightarrow ²⁹Si and ³⁰Si are produced through the v-porcess.

Summary

Range of Si isotopic ratios in 3.3, 4.0, 8.0 M₀ He star supernovae and an 8.0 M₀ He star hypernova
Si ratios of grains from supernovae

- 3.3, 4.0 M_{\odot} supernovae, 8.0 M_{\odot} hypernova X1 signature: $\delta^{29}Si/^{28}Si > \delta^{30}Si/^{28}Si$
 - Contribution from the Ni layer
 Fast temperature decrease
 The v-process
- 6.0, 8.0 M_o supernovae
 X2 signature: δ²⁹Si/²⁸Si < δ³⁰Si/²⁸Si
 Slow temperature decrease in the Ni layer

Outlook

Isotopic Ratios of Presolar Grains from Supernovae

- Seven layer mixing (Ni, Si/S, O/Si, O/Ne, C/O or O/C, He/C, He/N)
 - **Evaluation of the mixing ratios of heterogeneous mixing** to reproduce several isotopic ratios of the grains from superrnovae
- ⁷Li and ¹¹B are produced in supernovae.
 ⁴He(v,v'p)³H,⁴He(v,v'n)³He,¹²C(v,v'p)¹¹B,¹²C(v,v'n)¹¹C
 However, ⁴He(ve,e⁻p)³He,⁴He(ve,e⁺n)³H,¹²C(ve,e⁻p)¹¹C,¹²C(ve,e⁺n)¹¹B
 Code for neutrino oscillations in supernova ejecta has been made.
 Cross sections of the v-process are NEEDED!
 - We have only neutrino temperature dependent cross sections.