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1. Navier-Stokes equations

R3: 3-D Euclidean space, = = (1,0, 23), t > 0: time

u = u(x,t) = (u1(x,t),us(x,t),uz(x,t)) velocity vector,
p = p(x,t) pressure
b_9 + u —|— Z Lagrange differentiation
f— U 4
Dt~ ot ‘7896]
(N-S)
Du

1
o —vAu—-Vp, z€R3t>0 (momentum conservation)
P

divu=0, zeR3t>0. (mass conservation)

3. 92 o & 3. du;
JANE— —, V= , : . divu=V-u= —
Z 8:1:]2- (8331 0xo 8383) “ “ Z :

v.kinematic viscosity, p:density, Assume that v =p = 1.

(1)  u(x,0) =a(x) = (a1(x),ar>(x),a3(x)) (initial data)



Cauchy Problem. For given a find a pair {u,p} of functions
satisfying (N-S) for ¢t > 0 with (1) at ¢t = 0.

(i) O existence of global solutionst For a = a(x), dose (N-S)
have a solution {u,p} for all t > 0 O

(i)Duniqueness & regularity of solutionslIs the solution unique?
Is the solution infinitely many times differentiable with respect
to (x,t) O

(iii)0 continuity of solutions for initial dataC Suppose that {v, ¢}
is another solution of (N-S) for the initial data b(x). If a = b,

then {u,p} = {v,q} 7

If (i), (ii) and (iii) are affirmative, then we say that the Cauchy
problem to (N-S) is well-posed.



(iv) 0 blow-up of solutionst Does there exist a finte time Tk such
that the solution {u, p} satifies

{u(-,t),p(-,t)} € C®(R3) for0<t< Tk
{u(,8),p(-, )} ¢ C®(R3) for Tu <t ?

(v)Oasymptotic behavior of solutionsIn case (i), tlim {u(t),p(t)} =7
— 00
In case (iii), tlin%{u(t),p(t)} =7



Millennium Prize Problem proposed by Clay Math.
INnst. Are the questions (i) and (ii) true ?

Yes !
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cf. Poincaré Conjecture: another Millennium Prize
Problem
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Example of Cauchy problem to ODE

(2) Y SO, t>0
y(0) =a

For Va > 0 y(t) = ea is the solution for all ¢t > O (global solu-
tion).

3) Y = v >0

y(0) =a

? , 0 <t < 1/a(local solution)

1 —at

y(t) =

tlTlln;]ay(t) = 4-oo(blow-up at t = 1/a)



) WO — y@2 ), >0,

y(0) =a
1
1—(1—-1/a)et

00 y(t) =

0 <a< 1l =y(t) is the global solution with 0 < y(t) < 1 and
lim y(t) = 0.

t—00

a=1 = y(t) =1 is the trivial global solution.

l1<a=— y(t), 0O<t<log ( ) is the local solution,

1
1—1/a

lim y(t) = oo (blow-up)



Solutions to linear PDE

1. Poisson equation

—_Av=f, zeR3 G(z)= 4—|;U|_1
T

——

v(z) =/R3 Gz —y)f(y)dy, (/R3~-dy5///R3-~dy1dy2dy3)

gives a solution formula.

2. Cauchy problem to the heat equation

% —Av=F zeR3t>0, wv(z,0) =>b(z)
==
t
v(w,t) = [ Fe—y,0bw)dy+ | [ T(@—yt—m)fy7)dydr,

3 =2

gives a solution formula, where I'(x,t) = (4nt) 2e” 4t



Solution to nonlinear PDE — No solution formula!
Method 1; Linear perturbation

(N-S) = perturbation from the linear Stokes equation

( (9u 3
— —Au+Vp=—u-Vu, xR t>O0,
(N-S') § ot 3
divu=0 xzeR>t>D0,
| u(=,0) = a(=)

<=0 (Duhamel principle)

(IE)
u(x,t) = /IR{3 I_(a:—y,t)a(y)dy—/ot /R3 E(x—y,t—71)u-Vu(y, 7)dydr,

52
G(z — )My, t)dy, i,5=1,2 3.
el G L CDU

E;i(z,t) =T (x,t)d;; +



successive approximation(iteration method)

WO (1) = [ M@=y, Da(y)dy,

. t : :
u(J_I_l)(m, t) = u(0) (z,t) — /O /R3 E(x —y,t — T)u(]) : Vu(J)(y, T)dydT
(.] — 17 27 o )

existence of solution <  wu(zx,t) =3 Iim u(j)(x,t)

J—0C

In general, only local solution can be constructed;

3T, < oo such that 3 lim w9 (z,t) for 0 <t < Ty

J—00



Method 2; Variational principle

Energy conservation
3

& z i )Pde+ [ [ >

,Jl

8uz

(a: T) dasz

1/ 2
= 3 E lai(z)[“dx
2 /R ;2

for all 0 <t < oo. (5) is called energy equality of (N-S)-(1).0

(5) = 3 weak solution u such that
3

3 5 00
max 3i;|ui(:c,t)| d:c—l—/o /R?’ Z_:

O<t<oo JR

ou; (a: )

da:dT </ Z la; () |2d

advantage: Ju(-,t) solution for all 0 < t < co (global solution)

disadvantage: smoothness of u is unknown!



Question: Can we control

(x t)

t>0 R3

¢ 3
(6) /O/R3i2|Aui($,T)|2dxdT, max

by means of the initial data a 7




2. EXxistence of global weak solution

Lg = {u= (uj,up,uz);divu=0 / Z |uz(zv)|2d:v < 00},
=1

3 (9qu

HY = {u= (ui,un,u3z) € L? / >

,Jl

(w)

dac<oo}

3
uve L2 = () = [ 3 w@)v(@)de
1=1

8 .
u,v € HU1 = (u,v) 1 = (u,v) + (Vu,Vv), Vu= ( uz>
1,7=1,2,3
L2, Hl: Hilbert spacesd H! c L2
PDE theory in functional analysis

solution u(az t) <= one parameter family of ¢ with its value in L2
and H}, i.



X: Hilbert space(Banach space)du: t € [0,T) — u(-,t) € X,
ODE=— X =R1 R3,..., finite dimensional vector space

PDE=— X = L2 H! ... infinite dimensional function space

|- ||x: the norm of X,

T
L0, T; X)={u:te (0,T) — u(t) € X;/O |u(t)||5dt < o0}, 1<s< o
L0, T;X)={u:te (0,T) —u(t) € X; sup |u(t)|x < oo}
te(0,T)
c™([0,T); X)
={u:t€e[0,T)— u(t) € X,m-times continuously differentiable;

m

d
sup ||=——=u(t)||x < oo}
te[o,T) dt™



Definition 2.1. Let a € L2. A function u is a weak solution of
(N-S)—(1) on (O, T) if

(i) we L>®(0,T; L3) N L%(0,T; H});

(ii) The identity

/oT{—<u<t>» %j(t)) + (Vu(t), VO (@) + (u- Vu(t), P(t))}dt
= (a, CD(O))

holds for all ® € ¢1([0,T]; H) with ®(-,T) = 0. (u satisfies
(N-S) in the sense of distribution.)

Remarks. (i) {u,p} satisfies (N-S)—(1) in the usual sense(u:
classical solution) — u is a weak solution.

Indeed, we have by integration by parts



/T 2u®)

0 Y ,P(t))dt

T oD
_/O (u(), ()t + (u(T), ®(T)) — (u(0), $(0))

T Hb
— [ ®, 5 ®)dt = (a, 9(0)),
(~Au(®),®(®) = (Vu(®), V1)),
(Vp(), ®(1)) = —(p(t),div &) =0
hold for all ® € C1([0,T); H}) with ®(T) = 0.

(ii) Conversely, u is a weak solution of (N-S)—(1) on (0,T) with
the second derivatives on R3 x (0,7)0 == 0 Jp(z,t) such that
{u,p} is a classical solution.

Theorem 2.1. (Leray) For arbitrary a € Lg there exists a weak
solution u of (N-S)—(1) on (0,00) such that

1 2 t ) 1 >
(7) 5||u(t)||L2 +/S [Vu(r)|[72dm < §||u(8)||L2, 0<s<t<

(8) |lu(t) —all;2 — 0, ast— 40,



where |[u|| ;2 = /(u,u).

We solved Problem (i) by introducing the notion of
weak solutions.

Problem (ii) In the weak solution u(x,t) in Theorem 2.1
unique ? Is u(z,t) differentiable with respect to for (z,t) ?

partial answer: (7) guarantees smoothness of u to some extent.



Theorem 2.2. (Leray) Suppose that u is a weak solution of
(N-S)—(1) on (0,00) with the energy inequality (7). There is a
disjoint family {Ik}iozo of intervals on (0,c0) such that

(i) 379 > 0 such that Ig = [To,oo);

0. @)
1
(i) 1(0,00) \ Upolxl = 0 and 0 3" |I]3 < oo;
k=1

(i) u(-,t) € C®(R3) forall t € I, (k=0,1,---),

where |I| denotes the length of the interval I.

Leray named the weak solution u of (N-S)-(1) with the energy
inequality (7) a turbulent solution.



how to derive the energy inequality (7):

Suppose that {u,p} is a classical solution. =

(9) (g—?,u) + (—Au,u) + (v Vu,u) + (Vp,u) =0, ¢>0.

By integration by parts, we have

du 2
(a— ) — 5%” (t)HLQ? (—AU,U) — HVUHL27
(u-Vu,u) = / Z u] uzdac
1,7=1 Lj
" Ou
— _/R?’ Z J(uz)zda:—/ Z u]uZ .
i,]= 1 0 1,7=1 L7
= —(div u, |u|2) — (u,u - Vu)
= —(u,u-Vu) =0,
(Vp,u) = —(p,divu)=0.
Hence it follows from (9) that
1d

2dt||u(t)||L2 +|[Vu@®)|[?2, =0 for all t > 0.



Integrating the above identity in t over the interval (s,t), we have

1 ¢ 1
a2+ [ 1Vu(DFadr = Jllu()[32, 0<s <t <o

——

Apriori estimate !



Uniqueness and regularity of weak solutions
Theorem 2.3.0von Wahl, Giga, Sohr—K.O Let a € L2.

(i) (uniqueness ) Let u and v be two weak solutions of (N-S)—(1)
on (0,T). Suppose that v satisfies the energy inequality (7) with
s = 0. Assume that u satisfies

(10) we L>™(0,T;L3), ie., sup lu(z, t)|3dzr < co.
O<t<T /R3

Then we have v = v on R3 x (0,7).

(ii) (regularity) Suppose that u is a weak solution of (N-S)—(1)
on (0,T7). If

(11) uw e C([0,T); L),

i.e.,

Wl

t€[0,T) — |lu(®)|l;3 = (/R3 |u(x,t)|3dw) € R continuous function on [0,T)



Then we have
ou
E’
Question. In the weak solution uw € L°°(0,T; L3) of (N-S)—(1) a
smooth function 7?7

Vu,Vu, -, VFu, - e C(R3 x (0,T)).

Recent Result. Iskauriaza-Seregin-Sverdak showed

we L®0,T; L3 = u(®)eC®R3),0<Vt<T

by contradiction argument.

Problem. Direct proof of regularity result on weak solution in
the class L°°(0,T; L3)

Scaling invariance: )\ > O:parameter, a family {uy,py)} of func-
tions

ur(@,t) = Au(Az, \%t),  py(z,t) = Xp(Az, A%t)



{u,p} is a solution of (N-S) on R3 x (0, o).
>
{uy, pr}aso IS @ solution of (N-S) on R3 x (0, c0).

It is easy to check that

1
3
[urllpocizsy = sup ([l t)Pde) )’ at

1
3 3
sup u(x,t)|dx)> dt
O<t<oo /R3 (| ( )| )

— ||U||Loo(o,oo;L3)
holds for all A > 0. This implies that the space L*(0,oco; L3) is
invariant under the change of scale such as uy(z,t) = Au(Az, A\2t).

Importance!(Fujita-Kato principle) Find a solution « in a func-
tion space Y on R3 x (0,00) such as |luy|ly = ||lus||y holds for all
A > 0.



3. Local existence of classical solution.

Under which initial data a can we construct the weak solution
of (N-S)-(1) with (10) or (11) ?

S|

L" = {u= (uy,up,u3);

ullr = ([, l(@)'dz)" < oo}
L, = {uel";divu=0}
Theorem 3.1.0Kato, GigallLet 3 <r <ooandletae L. Then

there exist Tx > 0 and a unique solution u of (N-S)—(1) on (0, T%)
such that

(12) we C([0,T.); LT)
(13) %‘, Aw € C((0,T): LT)

If in addition a € L7 N L2, then wu is also a weak solution of (N-
S)—(0.1) on (0,T%) with the energy equality (5) for 0 <t < Tk.

Remark. (i) By (12) we see that w(t) is a classical solution on
R3 x (0, T%).



(ii) Tx: time interval of local classical solution

C
(14) Ty = s— for 3 <r < oo,
lall 7

where C = C(r) is a constant independent of a.

lallpr < 1= Ts> 1,

(iii) Question: Can we represent T for a € L3 ?

Corollary 3.2.(global classical solution of small data) There
is § > 0 such that if a € L2 satisfies ||al|;3 < &, then we have in

Theorem 3.1 that Ty = .



Question.
(i) (continuation) u(t) € C°(R3) for t > Ty 7
or

(ii) (blow-up) llTrrE |lu(t)||fr =00 7

Consider the vorticity rot u = w = (w1, wo,w3), Where

__ Ouz  Oup __ Ouy Ous __ Oup  Oug

wy = —— — —— — = — — - —

o 8:1;2 3563’ 2 (9.963 8$1’ 3T 8:1:1 8332



Theorem 3.3. 0 Ogawa-Taniuchi-K.,Yatsu-K.OLet a € L, 3 <
r < oco. Suppose that u is a solution of (N-S)—(1) on (0,T%) with
(12) and (13). If

T
(15) | i@l g, dt <o, i=1,2,3,
or

T, |
(16) L lei®liBarodt < 00, i=1,2

then there exists T/ > T, such that u can be extended to the
solution on (0,7") of (N-S)—(1) as

9
(17) u, a—?, Au € C(0,T'); LL).



Remarks. (i) Beale-Kato-Majda showed that if

T
(18) | i@ llpoedt < 00, i =1,2,3,
then 37’ > T, such that (18) holds. Notice that

lwllgo < Cllwllpymo < Cllwllpe,  [lwllpe = sup |w(z)l.
00,00 rER3

(ii) Vortex equation in R3

o,
8—6:—Aw—|—u-Vw—w-Vu=O
On the other hand, in R? for v = (u1,us) we have
8, 0
w = gu2 941 : scalar function
Oor1 Oz
with
ow

a—Aw—I—u-Vu}:O.

Maximum principle —

sup |lw(@®)||;reorm2y < |[rot all;eorm2y.  (18) is always OK.
sup_[lw(®)llpse(r2) < IOt all oo 2



(iii) The criterion (15) holds also for the equation of perfect
fluids, i.e., the Euler equations.

8u 3

divu=0, ze€R3t>0.

Question. Does the criterion (16) hold also for (E) ?



