Structual and Magnetic Properties of Nanocrystallized Trantition-Metal Oxides.

Hiroshi Kira (2004.8.1~)

Tohoku University	Y. Murakami, H. Tamura, Y. Ando T. Takahashi、M. Onodera K. Tsuda K.Oyama
Shizuoka University	Y. Yamazaki
Kyushu University	H. Ideguchi

本研究における階層融合

本研究における階層融合

原子・分子と凝縮物質の融合領域

Metal

Ex) Alkali Metal

Strongly Correlated Electron System

Ex) Transition metal oxides

Potassium clusters arranging in simple cubic structure

Tc ~ 6K Ferromagnetic transition

Spherical well potential

Nano-crystallized Strongly Correlated Electron System

Clarify the electronic states of nano-crystallized matter

Problems

- Synthesis of the nano-crystallized transitional metal oxide
- Stability
- · Size-distribution
- · Amounts

MCM-41

Structure of MCM-41

Nanomater sized glass tube

LaMnO₃

Perovskite Structure

LaMnO₃ Canted Antiferromagnet (T_N=141K)

T.Sato, 2003(Tohoku University)

Preparation of LMO/MCM-41

1. MCM-41+ La and Mn Nitrate solution

La and Mn nitrate is introduced into 1-d channel of MCM-41

2. Annealing (700 , 20h, Oxygen atmosphere)

La(NO3)3 + Mn(NO3)2 LaMnO3 + 5NO2 + O2

Pristine

Magnetic properties of LMO/MCM-41

75K 150K 270K

Three Types FM Transitions Tc=75K,150K,270K

•Tc = 270 K??
LaMnO_{3+δ} : Tc=130K – 160K

X-Ray Powder Diffraction AND TEM Image

X-Ray Powder Diffraction AND TEM Image

- LMO nano crystal
- No bulk phase LMO Observed FM transition corresponding to the nano crystal?

Energy

Optimization of the synthetic condition 1

Magnetization

770 で最も大きい磁化

760 以上では $La_2Si_2O_7$

X-Ray Powder Diffraction

Observed FM transition (Tc=280K) corresponding to the nano crystal

Optimization of the synthetic condition 2

Annealed at 750

Peaks of LMO Nano Crystal

Size of the nano crystal
60 ~ 100

Succeeded in developping the method of nano-crystallize the transition metal oxides

Magnetism of LMO/MCM-41

Three types of ferromagnetism

Three types of LMO nano crystals

Electronic states of nano crystals in LMO/MCM-41

Magnetism of LMO/MCM-41

 $TiO_2 / MCM-41$

TiO₂ Cataryst works with UV light

Nanocrystal TiO2 Visible light??

<u>X-ray powder diffraction</u> TiO₂ nano clusters realized

Purpose

Clarify the electronic states of nano-crystallized matter

Results

Succeeded in preparation of LaMnO₃nano crystals Succeeded in developping the method of nano-crystallize the transition metal oxides

high Tc of FM Transition in LaMnO₃/MCM-41 Size effects acts the effective charge transfer

TiO₂/MCM-41 nano crystals MnO₂/MCM-41