Medium Effects: Hadrons in Nuclear Matter and Nuclei in Condensed Matter

核物質中のハドロン·凝縮系中の原子核 に及ぼす媒質環境の効果

原子核理学研究施設 笠木 治郎太

How are basic corpuscles affected by surrounding media? Are their properties modified very much?

Nucleons in various media

Parity doublet, Mass reduction in nuclei?

Chiral symmetry: axial vector transformation in isospin (flavor) space Parity doublet in chiral symmetric phase

Nucleon resonances in nuclei; experiments at Laboratory of Nuclear Science (LNS)

 $S_{11}(1535)$ in C,Cu(γ , η) reactions

QMD calculation

In a nucleus nucleon momentum distribution (Fermi motion) Pauli blocking S₁₁+N N+N; collisions ηN πN,...; η absorption

Comparisons with QMD

Conclusion: Increase of Γ_0 is required to explain the data; 150 230 MeV. i.e., Γ_{γ} , Γ_{π} , Γ_{η} increase; related to swelling of nucleon in a nucleus. No M_R shift is observed: no mass shift or the same amount for N and S₁₁. More sensitive measurements future experiments with new setup heavier nuclei, (γ , η p) measurements, selection s-state nucleon

Mesons in nuclei experiments at SPring8 LEPS

σ meson in nuclei?

Mass spectrum changes considerably; density dependence? Quantitative analysis on $2\pi^0$ photo-production are needed including FSI.

multi- γ -ray detecting system for GeV γ line #2 (to be replaced with SCISSORS II)

Lead Glass Array

How does condensed matter affect nuclear phenomena? Nucleus: 10⁻¹⁴ m, Mev Condensed matter: 10⁻¹⁰ m, eV

Gamma-ray absorption and emission

Mossbauer effect: Lattice absorbs the recoil momentum up to ~ 100 keV/c. QED Casimir effect: Lifetime can be modified by changing a QED vacuum?

Beta decay, Electron capture

Lifetime change: Electron wave function is modified in chemical compound, under ultra-high pressure, ...

Charged particle induced reactions

Fusion reaction rate: screening effects of bound electrons, in plasma, Mu-on catalyzed fusion:

Low-energy nuclear reactions in condensed matter

Low-energy Nuclear Reaction

Nuclear reactions in metal

Low-energy deuteron generator at LNS

 $E_d = 2 \sim 100 \text{ keV}$

- 25 ~ 100 keV; acceleration mode
- $2 \sim 25$ keV; deceleration mode

I_d up to 500 μA

Deuterons in metals

Deuteron bombardment

Deuteron density becomes constant Density saturation Large diffusion during D bombarding

DD fusion in metal; Strongly enhanced reaction rate

Screening energy for various metals

U_s host metal deuteron density in metal Fluidity of deuteron in metal? Temperature, etc.?

Max. Us: 600 eV, so far observed

Us	DD reaction rates	at E ~ eV
U _s (eV) rate(/cc/sec)	σ(b)
300	4 × 10 ^{-4 ~ -2}	10 ⁻²⁷
600	4 × 10 ^{7~9}	10 ⁻¹⁶
1000	4 × 10 ^{11 ~ 13}	10 ⁻¹²

10

(重陽子密度)⁻¹ (10²²/cm³)⁻¹

15

20

22

25

5

PdO

D⁺ and e⁻ plasma in metal lattice?

Ion-electron system: $M^{q+} + XD^+ + (q+X)e^$ $n_M \sim 10^{22}/cm^3$, $n_D \sim 10^{21}/cm^3 n_e \sim 10^{22}/cm^3$

Plasma Parameters: Wigner-Seitz radius (mean distance) $a=(3/4\pi n)^{1/3}$; $a_D \sim 0.62$ nm, $a_e \sim 0.28$ nm Coulomb coupling parameter $\Gamma=(e^2/a_D)/kT \sim 100$ for classical deuterons $r_s=a_e/a_B \sim 5$ for quantum electrons strong coupling condition; $\Gamma>>1$, $r_s>>1$ Quantum (degeneracy) parameter $\Lambda=h/(2\pi MkT)^{1/2}/a$; <<1 classical, >>1 quantum $\Lambda \sim 0.1$ (for D⁺); classical $\Lambda \sim 15$ (for e⁻); quantum

D+; ~ classical gas, strongly coupled e⁻; quantum gas, ~ strongly coupled

Screened potential: $\phi(r)=e/r \cdot exp(-ar)$ Debye screening, Thomas-Fermi screening

Simple Debye and Thomas-Fermi picture are failed!

- 1. Non-ideal plasma?
 - $\Gamma \sim 100$ for deuterons in metal
 - $r_s \sim 5$ for electrons in metal
 - i.e., strong coupling simple prediction cannot be applied
- 2. Effect of host metal structure ? Strong dependence of Us on host metals
- Effect of irradiation?
 Defects of lattice during bombardment Vacancy trapping multi deuterons
- 4. Reaction rates at room temperature?

 $\begin{array}{ll} U_{s}(eV) & reactions/cc/sec\\ 300 & 4 \times 10^{-4 \, \sim \, -2}\\ 600 & 4 \times 10^{7 \, \sim \, 9} \end{array}$

Theoretical study by Kato and Takigawa

Jellium model

Metal is replaced by a uniform electron gas with a compensating positive background having the same mean electronic density.

Theoretical study by Kato and Takigawa

Screening energy against

Experimental result

600 eV : PdO 310 eV : Pd 200 eV : Fe 70 eV : Au, Ti

Enhancement factor f

$$f(E) = \frac{P(E+U_e)}{P(E)} \approx \exp\left(\pi\eta \frac{U_e}{E}\right)$$
$$P(E) \propto \exp\left(-2\pi \frac{Z_1 Z_2 e^2}{\hbar \upsilon}\right)$$

Theoretical study by Kato and Takigawa

Summary

- Non linear screening energy is a few times larger than linear one.
- In non linear case, screening energy is almost constant in the range here studied.
- Only the screening effect by the valance electron is too small to understand the experimental result.

Future

- Pile up to incident deuteron
- The dynamics of the implanted deuteron
- Structure of metal

Li+D reactions in Pd and Au

Target: Pd-Li, Au-Li alloy (several % of Li)
Cooled at -80 °C
∆E-E silicon counter telescope
(30-100 µm thick Si)
Frequent measurements at 75 keV

Screening energy for Li+D in Pd and Au

Comparison of screening energies in metals for Li+d and D+D reactions

Host	U _s (D+D)	U _s (Li+d)	$3 \times Us(D+D)$
Pd	310 ± 30 (ours)	1500 ± 310 (ours)	930
	800 ± 90 (Rolfs)		2400
Au	70 ± 30 (ours)	60 ± 150 (ours)	210
	280 ± 50 (Rolfs)		840

In Pd; Both Li+d and D+D reactions are enhanced strongly

Scaling ? $\phi_s = Z_1 e/r \exp(-\kappa r) \sim Z_1 e/r (1-\kappa r)$ $U_s = Z_1 Z_2 e^2 \kappa$ $U_s(Li+d) = 3U_s(D+D)$

Li+D reactions in solid and liquid phases

Lifetime of ⁷Be

⁷Be lifetime in various chemical compounds H.W. Johlige et al. Phys. Rev. C2 (1970) 1616

Electron capture Changing electron wave function lifetime of nucleus change ?

Maximum change ~ 0.2% !

⁷Be lifetime under high pressure W.K. Hensley et al. Science 181 (1973) 1164

1. Fractional Fig. increase in the total decay constant of 'Be in 'BeO as a function of pressure; the line is a leastsquares fit of our data (see text). Erbars represent standard deviaone tion. The data point of Gogarty et al. (5) is calculated from a least-squares fit of 20 measurements near 100 kbar.

⁷Be encapsulated in C₆₀

Spectra on ⁷Be in C₆₀

γ-ray spectrum

HPLC spectrum

Decay curve of ⁷Be in C₆₀

T_{1/2}(days) of ⁷Be

 $\begin{array}{l} 52.68 \pm 0.05 \text{ in } C_{60} \\ 53.12 \pm 0.05 \text{ in Be metal} \end{array}$

~0.8 % change!

The largest change so far observed

Chemical or Physical effect?

