Single-point condensation

phenomena

for a four-dimensional

biharmonic semilinear problem

Futoshi Takahashi (高橋太)

Tohoku University (COE fellow)

Problem.

4-th order elliptic problem (E_p) :

$$(E_p) \begin{cases} \Delta^2 u = u^p & \text{in } \Omega, \\ u > 0 & \text{in } \Omega, \\ u|_{\partial\Omega} = \Delta u|_{\partial\Omega} = 0, \end{cases}$$

- Ω is a smooth bounded domain in \mathbb{R}^4 ,
- $\Delta^2 = \Delta \Delta$ is an iterated Laplacian (biharmonic operator) in \mathbf{R}^4 ,
- p > 1 is any positive number.

Background

- Mathematical biology,
- Conformal geometry on 4-manifold.

Question

What happens to solutions of (E_p) when we take $p \to \infty$?

How do the normalized solutions look like when $p \to \infty$?

Least energy solution

Constrained minimization problem:

$$C_p^2 := \inf\{\int_{\Omega} |\Delta u|^2 dx :$$

$$u \in H^2 \cap H^1_0(\Omega), \|u\|_{p+1} = 1\}$$

 $\exists \ \underline{u}_p \in H^2 \cap H^1_0(\Omega), \|\underline{u}_p\|_{p+1} = 1 :$ minimizer for C_p^2 .

$$u_p := C_p^{\frac{2}{p-1}} \underline{u}_p.$$

 u_p : least energy solution to (E_p) .

Main results.

Theorem 1.

Assume Ω is a smooth bounded convex domain in \mathbf{R}^4 and u_p is the least energy solutions to (E_p) .

Then we have :

$$1 \leq \liminf_{p \to \infty} \|u_p\|_{L^{\infty}(\Omega)} \leq$$
$$\leq \limsup_{p \to \infty} \|u_p\|_{L^{\infty}(\Omega)} \leq \sqrt{e}.$$

• Normalized function:

$$w_p(x) := \frac{u_p(x)}{\int_{\Omega} u_p^p dx}.$$

• w_p satisfies

$$\begin{cases} \Delta^2 w_p = f_p(x) := \frac{u_p^p(x)}{\int_{\Omega} u_p^p dx} & \text{in } \Omega, \\ w_p > 0 & \text{in } \Omega, \\ w_p|_{\partial\Omega} = \Delta w_p|_{\partial\Omega} = 0. \end{cases}$$

Definition (Blow up set of $\{w_{p_n}\}$)

 $S := \{x \in \overline{\Omega} : \exists \text{a subsequence } w_{p'_n}, \\ \exists \{x_n\} \subset \Omega \text{ such that} \\ x_n \to x \text{ and } w_{p'_n}(x_n) \to \infty \}.$

Definition (Peak set of $\{u_{p_n}\}$)

$$P := \{ x \in \overline{\Omega} : u_{p_n}(x) = ||u_{p_n}||_{L^{\infty}(\Omega)} \}.$$

Fact

{Peak points of u_{p_n} } \subset {Blow up points of w_{p_n} }

Theorem 2.

Let $\Omega \subset \mathbf{R}^4$ be a smooth convex bounded domain.

Then for any sequence w_{p_n} $(p_n \to \infty)$, \exists a subsequence such that :

- the blow up set S of this subsequence satisfies S = {x₀} for x₀ ∈ Ω
 (one point blow up), and
- (1) (Convergence of f_n)

$$f_n(x) := \frac{u_{p_n}^{p_n}(x)}{\int_{\Omega} u_{p_n}^{p_n} dx} \stackrel{*}{\rightharpoonup} \delta_{x_0}$$

in the sense of Radon measures of Ω .

(2) (Convergence of w_{p_n})

$$w_{p_n} \to G_4(\cdot, x_0)$$
 in $C^4_{loc}(\overline{\Omega} \setminus \{x_0\})$

where

 $G_4(x,y)$ denotes the Green function of Δ^2 under the Navier boundary condition:

$$\begin{cases} \Delta_x^2 G_4(x,y) = \delta_y(x), \ x \in \Omega, \\ G_4(x,y)|_{x \in \partial \Omega} = \Delta G_4(x,y)|_{x \in \partial \Omega} = 0. \end{cases}$$

(3) (Characterization of blow-up point) x_0 is a critical point of the Robin function $R_4(x) = H_4(x,x)$:

$$\nabla R_4(x_0) = \vec{0}.$$

where

$$H_4(x,y) := G_4(x,y) + \frac{1}{8\pi^2} \log|x-y|$$

denotes the regular part of G_4 .

Conclusion.

The set of peak points of $\{u_{p_n}\}$ is the same as the blow up set of $\{w_{p_n}\}$ and the least energy solutions must develop single-point spiky pattern, under the assumption that the domain is convex.

Remark.

- The convexity of Ω is needed for the use of Method of Moving Planes (MMP).
- Application of Kelvin transformations does not work for our Δ^2 case.

Open problems.

- (1) Do least energy solutions have multiple peaks if Ω is not convex?
- (2) Is the peak point x_0 of least energy solutions actually the maximum point of the Robin function?
- (3) Are least energy solutions to (E_p) unique on convex domains?