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SOLUTION FOR NONLINEAR SCHRODINGER
EQUATION WITH HARMONIC POTENTIAL *
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Abstract: For the nonlinear Schrédinger equation with harmonic potential
which describes Bose-Einstein condensate, the L?-mass concentration proper-
ties of the blow-up solutions are obtained. Moreover, for arbitrary/ k points
in R*, a blow-up solution such that an L?-mass concentration phenomenon
occﬁrs at the corresponding other £ points is éonstructed. '
Keywords L%-mass concentration, Nonlinear Schrodinger equation, Blow-up
solution, Harmonic potential.
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1 Introduction

In this paper, we study the Cauchy problem of the following nonlinear Schrédinger

equation with harmonic potential

1 1 '
iUy = —§Au + EwZ[xIZ'u +alu|*u, t>0,z€R", (1.1)

u(0,2) = ¢(a), (12)

where w > 0,a < 0, are the parameters, n is the space dimension,u(t,z) : R x R* — C, A
is the Laplace operator on R", ¢(z) is the initial data. Equation (1.1) is well known as
a model for describing the Bose-Einstein condensate with attractive inter-particle inter-

actions under a magnetic trap (#%!%1%. The harmonic potential |z|* models a magnetic

*This work is supported by the National Natural Science Foundation of China.
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field whose role is to confine the movement of particles, w is the trap frequency, — is the
scattering length!®%16:19]

Oh™® has established the local well-posedness of the Cauchy problem (1.1), (1.2)in
the corresponding energy field. Cazenave® and Zhang'® studied the blow-up properties
of the solutions and obtained the sufficient condition for blow-up solutions. At the same
time, since the blow-up properties of the so}utions correspond to the wave collapse of the
condensate, physicists are very interested in the related studies®*®l. This stimulates us to

carry out elaborated mathematical research on the blow-up properties of the solutions.

We recall the classic nonlinear Schrédinger equation
1 : | '
Uy = —EAU+ alul*u, t>0,z€ R" (1.3)

u(0,z) = ¢(), * | (1.4)
where a < 5 is a parameter. There has been a lot of work on the blow-up properties‘
of equation (1.3)1+34710-141718.20] - Glasseyl” and Weinstein!” studied the sufficient con-
dition for the blow up solution to equation (1.3). Based on Weinstein!®), Merle and |
Tsutsumil™¥ proved that the blow-up solution of (1.3) with a spherically symmetric ini-
‘tial data has thg property of L2-mass concentration. Moreover, Merle generalized this
result in [13], that is , for any k points in R™ , he constructed a blow-up solution such
that an L?-mass concentration phenomenon occurs just at the k points. We see that for
equation (1.3), a series of elaborated results on.the blow-up have been got, particularly
the construction of the blow-up solu£ions with some specific properties has been highly
valued[**3:18], |

For equation (1.1), based on the need of physics, we hope to carry out the similar
study as Merle and Tsutsumi on equation (13) However, due to the influence from -
harmonic potential |z|? , there are differences in essence between equation (1.1) and
equation (1.3) in some aspects such as the existence and stability of staﬁding waves with
ground statel®851°, Moreover, we find that the method of [13] can not be used to equation
(1.1). Forfunately, as a bridge between the solution of equation (1.1) and the solution
_is also invalid unless it is based on the fact that we turn the limit of integral on the
neighborhoods of rﬁoving point into the limit of integral on the neighborhoods of a fixed

point. This technical treatment of the limit constitute the crucial part of this paper. -
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In this paper, it is proved that if the solution of the Cauchy problem (1.3),(1.4) blows
up in finite time, the solution of the Cauchy problem(l.l),(1.2)Will not only blow up but
has the property of L?-mass concentration at blow-up time. Specially, if initial data
has a spherical symmetry, the L? -mass concentration phenomenon will occur at origin
0. Furthermore, for any k poinfs Z1,Z3, ., 2 In R™ , a blow-up solution is constructed
- such that an L2-mass concentration phenomenon occurs at the corresponding other &
points ¢z, ¢z, .., cT), where c is a constant that depends on the given k points. For these
particﬁlar solutions, we also study their local behavior at the points at blow-up time. We
notice that these results, especially for construction of blow-up solution with & L?—mass
concentration points , are different from Merlel®l. Moreover, we see that the results above
describe the wave collapse phenomenon of Bose-Einstein Condensate from mathematical
viewpoints. '

The plan of this paper is as follows. In section 2, the local well-posedness of solution
of equation (1.1) is given. In section 3, the L?-mass concentration of blow-up solutions
is proved. In section 4, we construct the blovv—uP solution with k L?—mass concentration

points. In section 5, some remarks are given.
We conclude this section by giving several notations. We abbreviate [en -dz by f.,

(11242 gy BY 1111 2es5 20d [l z2gary By (][22
2 Local Well-posedness

We define a Hilbert space X by

Y= HY(R")N{u:u|z| € L*(R™)}
with the innef product
< u,v >= /VUV'17+ uU + |z*un, Vu,v € L.

The norm of ¥ is denoted by ||.||z. Moreover, we define the energy functional £ on ¥ by

& .
1+2

B = [ V9P + JorlaPlol + T2 wPt, Ve e .

According to the Sobolev embedding theorem, the functional E is well defined. From

Oh[15], we.note that the local well-posedness for the Cauchy rpro'blem to (1.1) holds in 2.
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Proposition 1 Let ¢ in ¥. Then there exists a unique solution of the Cauchy
problem (1.1),(1.2) in C([0, 7), Z) for some 7 € (0, +oo] (maximal existence time),
and 7 = +00 or 7 < 4o00. If 7 = +oco ,solution u is called a global solution. If
T < +00, solution u is called blow-up in finite time ( also called wave collapse).
In addition, u satisfies the following two conservation laws '

(i)conservation of mass

lu@Ilz: = llllz2s, T €0, 7). (2.1)
(ii)conservation of energy

Bu) =Bl te[on). | 2.2
Consider the n_onli_near elliptic equation

—50Q+Q — —alQl*Q, zeR (2.3)

where a < 0. From Weinstein [17] and Kwong [9], we have the following proposition.
Proposition 2 There exists a unique ground state solution Q(z) to (2.3) which |
is a positive and spherically symmetric solution with exponentially decay at
infinity. /

Remark 1 It is known that the ground state solution has the minimal L*-norm, i.e., for

_any solutions of equation (2.3), @'(z) different from zero, we have ||Q’||z2 > ||@]|z

3 The L?-mass concentration of blow-up solution

For a better understanding of the local behavior. of blow-up solution to equation
(1.1) at blow-up time, this section is devoted to prove that for some blow-up sé)lutiéns,
an L?—mass concentration phenomenon occurs at blow-up time. In addit-ion, if the initial
data ¢ has a spherical symmetry, an L?—mass concentration occurs just at the origin 0.
Two theorems are established in tI;is section.

_Lemma 1B (1) Assume that v is the solution of the Cauchy problem (1.3),(1.4) in
C([0,t), &) where t, > 0. Let _

tanwt T

)s (3.1)

U(t,.’l?) — — e——i“;zztaﬁwtv(
2

(coswt) w coswt



then u(t,z) € C([0,erctenein) 73) is the solution of Cauchy problem (1.1),(1.2). In par-
ticular, if v € C([0, +00), ¥)(global solution), u(t) € C([0, %), ¥) is the local solution of
Cauchy problem (1.1),(1.2).

(2) Assume that u is the solution of the Cauchy problem (1.1),(1.2) in C([0, %), Z) where
th € (0, =] .Let '

ot z) = 1 6¢r§iﬁw32z‘_2u(arctanwt oz
T (14 (wt)?) w (14 (wt)?)z

)s (3.2)

then v(t,z) € C([0, t—“lw‘fiﬁ), ) is the solution of the Cauchy problem (1.3),(1.4). In partic-
ular, if u € C([0, ), %) , v(t, z) € C([0, +00), ) is the global solution of Cauchy problem
(1.3),(1.4). . |

Remark 2 The transform of lemma 2 is Based on the fact that u(0,z) = v(0,z) = .
Moreover, the solution obtained by lemma 2 is usually a local solution. The maximal
existence time of the local solution for the Cauchy problem relies on the initial data ¢.

Based on lemma 1, we get lemma 2. »
Lemma 2 Assume that v is the blow-up solution of the Cauchy problem (1.3),(1.4) in
C([0,T),%) for some T € (0,+o00) (maximal existence time). Let u(t,z) is defined by
(3.1), then | | |
(1) u(t,z) € C([0, 2xtemL), 33) is the blow-up solution of Cauchy problem (1.1),(1.2),

where [0, 2rfeneT) s the maximal existence time .

w

2) v(t,3) = —i Tty (artenet =) ¢ 0, T).(3.2)

T+ T ’ (1+(w))?

Proof: (1) By lemma 1, u(t,z) defined above is the solution of the Cauchy problem

(1.1), (1.2) in C([0, ezeteneT) 5). Let [0,7) be the maximal existence time of u, then

T > erdeneT T et ug argue 7 = 4#22¢T by contradiction. Assume 7 > rtenel then there

are two cases. _
(i)eretenel < < = Since u € C([0;7),%), by lemma 1, let v(t*, z) be defined by (3.2),

then v*(¢, z) € C([0, %), ¥)is the solution of Cauchy problem of (1.3),(1.4). According
to the uniqueness of solution of Cauchy probiem of equation (1.3), we get v = v* on
[0, t“—zﬂ) But t“"% > T, it contradicts that [0,7") is the maximal time interval of u.

(i) esdteneT o I < 7 . Since u € C([0, =)), according to lemma 1 and the unique-
ness of the solution of Cauchy problem of equation (1.3), we directly get that v(¢,z) €
C([0,+00), L) is the solution of Cauchy problem (1.3),(1.4), which implies v is a global

solution. It contradicts that v blows up in finite time.
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Hence 7 = erctanel | which implies u(t, z) blows up in finite time, where [0, arctanwT )

is the maximal time .

(2)From (1), we get 7 = exctanel j o T = femr  So we get v* by (3.2), and v* €

w 7

C([0, feret) 7). According to the uniqueness of solution of equation (1.3), we have v = v*

on [0,T), where [0,T) is the maximal existence time. This concludes the proof of (2).
For equation (1.3), Merle proved the following two important L?>-mass concentration

properties for the blow-up solutions in [10,14].

Lemma 307 Assume that, v is the blow-up solution of the Cauchy problem (1.3),(1.4) in

C([0,T),%) for some T € (0, +00) (maxima] existence time). Then there is an L*-mass

- concentration phenomenon for v(t) as t — T 3z(t) € R™, for all r > 0,
lim inf {|v (&)l z2(s 0.7 2 1@z,

where B(z(t),r) = {z € R*: |x z(t)| < r}, Q(z) is the ground state solutior of equation
(2.3).

Lemma 4"4 Assume that n > 2, that ¢ has a spherical symmetry, and that v is the
blow-up solution of the Cauchy problem (1.3),(1.4) in C([0,T), %) for some T € (0, +o0)
(maximal existence time). Then for v(¢), there is an L? mass concentration phenomenon

at origin 0 as t — 1" for all r > 0,
h?})iTnf HP(t)HLz(é(o,r)) > |1Q]|e,

where B(0,7) = {z € R™: |z| < r},Q(z) is the ground state solution of equation (2.3).

With the lemmas above, two theorems are established.

Theorem 1 Assume that v is the blow-up solution of the Cauchy problem
(1.3),(1.4) in C([0,T),%) for some T € (0,+cc) (maximal existence time), and
that u is the solution of the Cauchy problem (1.1),(1.2) in C’([O T*) Y) for some
T* € (0,+00] (maximal existence time) . Then

(1) u(t) blows up at time T*, where T = ertensT <z

w 2w "

R", for all » > 0,
lim inf |fu(®)|2@wwm 2 (1@,



where B(y(t),r) = {z € R* : |z — y(t)| < r},Q(z) is the ground state solution of
equation (2.3). )

Theor_em 2 Assume that n > 2 and initial data ¢ has a spherical symmetry,
that v is the blow-up solution of the Cauchy problem (1.3),(1.4) in C([0,T),%)
for some T € (0,4+00) (maximal existence time), and that u is the solution of
‘the Cauchy problem (1.1),(1.2) in C([0,T™),%) for some T* € (0, +o0] (inaximal
existence time) . Then for u(t), an L>-mass concentration phenomenon occurs

at origin 0 as ¢t — T™: for all r > 0, i
im i 2 >
lim inf ||u(t)|| 20y 2 11@l]z-,
where B(0,7) = {z € R*: |z| < r},Q(z) is the ground state solution of equation
(2.3).
In this sense, origin 0 is called an L?>-mass concentration point.

Proof of Theorem 1.
(1) By lemmia 2, we define u*(¢,z) by (3.1),'then u*(t, z) € C([0, 2rte2T) %) is the blow-

w

up solution of Cauchy problem (1.1),(1.2), where [0, 2=2m«T) jg the maximal existence

w

time. According to the uniqueness of solution to the Cauchy problem of equation (1.1),

u(t) = u*(t) on [0, erdenel)  So T* = erdlenel o L which implies that u(t) blows up at
time 1.

(2) By lemma 2,

1 22 w2 arctanwt T
= ————————— "% 1Fu2¢2 : . tel0,T 3.2
'U(tv .’L') (1 + (wt)2)’% e + ’LL( w ) (1 + (U)t)z)%) ’ € [ ) ) ( )

Since v (t) blows up at time T", by lemma. 3, there is an L?>-mass concentration phenomenon

as t = T for v(t): 3z(¢) € R", for all 7 > 0,
lin inf {[o(¢) | 2(se,m) 2 ||@lz2.

By (3.2),

o ETI 1 _arctanwt z . 25 \1
llg_l)%anU(t) 2Bt m) = hﬁ}-"nf(ﬁ_z(t)]gr l(l T (wt))E w'( w0+ (wt)2)%)l dz)

— z ! _ arctonwt ) —;
Let y = LY t' = ardtemt then t' € [0, T).
lim inf .'U llz2Ba.y = lim inf u(t',y)[*dy z 0t < T
=T II ()”L (Bl T ( l(1+(tanwt')2)12-y—$( w I)ISTI ( , )I ) ,. .
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Put y(t) = —252)— ¢ R™ | then for all 7 > 0,

(1+(tanwt!)?) 3

i of 1008l |oxaeoon = gminf( | u(, 5)Pdy)? > [1Qllz=, 0<t¢ < T
14(tanwt!)2 3

lim inf

t'—T t' T

|U( )”L2(B(y(t') r)) = = lim mf(fly—yv(t'ﬂsr IU(L”, y) Izdy)%

> lim inf{( @, ) Pdy)? > Qe 0<t <T.

1 L]
EoT Jy—ye)s————
(1+(taﬂ.wt’)2)2 .

It doesn’t matter to replace ¢’ with . Hence for u(¢) there is an L?-mass concentration

phenomenon as t — 7™ : Jy(t) € R*, for all » > 0,

liminf [[u(t Nez@womn = 1@z

t—T*
This concludes the proof of theorem 1.

In the same way, by lemma 4, theorem 2 can be proved .

4 Construction of the blow-up solution with &
L?-mass concentration points

Since for some spherically symmetric blow-up solutions to (1.1), origin 0 is an L*-
'méss concentration point, therefore it is natural to ask if there exists a—blow—up solution
to (1.1) such that the set of L*-mass concentration points i is different from origin 0, and
what behavior it actually has at blow—up time.

In this section, for any k points z1, z,, .., z; in K™, a blow-up solution is constructed
such that an IP-—mass concentration phenomenon occurs at the corresponding & points
€Ty, CZg, .., CTy, where c is a constant that depends on the given k points. In addition, the

* blow-up solution is sufficiently close to a function at blow-up time.
First of all, we recall an important result obtained by Merle* for equation (1. 3)

lemma 5" Let ;,2,,..,7; be any k points in R", Q1,@s,.., @, are the sphencally
symmetric solution of (2.3), then thereis a constant b > 0 such that as b; > b(i=1,2,..,k)
there exists a blow-up solution u of (1.3) in C([0,T), Z) for some 7" € (0, +o0) (maximal

existence time ), and u satisfies:



(o)lim o0 lercaenr) = [1Qullzes V7 € Anyi=1,2,..F,

where A= {r > 0: B(z;,7) N B(z;,7) = ¢,1 <#j < k}, B(z;,r) ={z € R*: |z — ;| <
rhi=1,2,.,k,

(b)%i_{nT|Iv(t)HLz(Rn\U.{F-:].B(xi.,T')) = 0‘, Vr > 0, 1= 1, 2, . k,

(c)there exists a constant v > 0, such that for V¢ € [0,T),
1o(8) = Qr()l] joss < €77,

where Qr(t) = 32 |(T — t)|-2e T TG g, (f=zn
Remark 3 Du;_irllg the process of pr;)of of lemma 5, F. Merle constructed the blow-up
solution o(¢) such that [[v(0) 2 = llgll3 = 3 1Q:

Now for equation (1.1) which describesz_Blose-Einstein condensate, the useful results
as good ac equation (1.3) are proposed and then proved.
Theorem 3 Let z,,z,..,z; be' any k points in R", 1, Q,, .., @, are the spherically
symmetric solution of (2.3), then there exists a blow-up solution u of equation
(1.1) in"C([0,7),%) for some 7 € (0,+00), where [0,7) is the maximal existence
time, and u satisfies: '

(1) The L*-mass of u(t) concentrates at points (coswt)z;, (coswT)Zs.., (coswT)z;, in

the following sense, for all r € A,'
lim [[u@)||z2seomwnenm = Qillzs,  1=1,2,..k,

where A = {r > 0: B((coswT)z;, r)NB((coswT)z;,7) = ¢,1 <1 # j < k}, B((cosz)xi,r) =
{z€R": |z — (coswr)z;| <r},i=1,2,.., k. ' '
(2) For all r > 0,

lim [|u(t)]| =0, i=1,2,.,k

t—T L2(Rm\ _Ql B((coswt)zi,r)) -

According to the definition of the ground state solution, we note that

l]-j];l |Iu(t)HLz(B((casz)zi,r)) = HQz”L2 > ”Q”L27

which implies that (coswT)z; is the L?-mass concentration point, for all 1 <7 < k. r
In order to prove theorem 3, we need to show the following lemma , which is crucial

for the proof.



Lemma 6 Let z;,z,,..,z; be any k points in' B", there exists a blow-up solution u of

equation (1.1) in C([0,7), Z) for some 7 € (0, +00) (maximal existence time) such that
%1_{1;1 Hu(t)l|L2(B((coswt)a:,-,rcoswt)) = 151;1 ||u(t)|le(B((casz)z;,rcoswt)) = ”Qll |L27 rE A, 1= 1,- 2, . k. (41)

Proof of Lemma 6.
Step 1. Get the blow-up solution u.
by Lemma 5, we have v(t) € C([0,T), %) that is the blow-up solution of equation (1.3),
where [0, T) is the maximal existence time. v has properties (a), (b), (c). According to
Lemma 2, let u(t, z) is defined by (3.1), then u is the blow-up solution of equation(1.1),
where 7 = erefenel [0 ) is the maximal existence time of u. u(O) = v(0) = ¢(z).
Step 2. The blow-up solution sétisﬁes (4.1)
Since coswt > 0, for all ¢t € [0,7),7 < E, for all € A, we have

(O] — ju(t, z)Pds

|z—(coswt)z:|<rcoswt

: 1 tanwt = |, , '
= . dr = — )2 =1,2,.., k.
/'I—(coswt)::ils-rcoswt I(Coswt)g v( w COSWt)l * Hv( w )HL"’(B(:::;,-;-))) ’ . o

Since it is easy to get A C Ay, by Lemma 5, we have for allr € A,
Limn [ (8)] 2o eonstrzerconsey = Mty ([0 |2 penry = [1@elle, (4.2)

where ¢* = fenwt and ¢ € [0, 7).

For a fixed i, V¢t € [0,7), we denote by Bi,; the closed ball in R™ with a fixed center
(coswT)z; and changing radius rcoswt, while by B, the closed ball in R® with 2 moving
center (coswt)z; and changing radius rcoswt. Namely, B;,; = B((coswT)z;, rcoswt) =
{z-€ R" : |z — (coswt)z;| < reoswt},By = B((coswt)z;,rcoswt) = {z € R* : |z —
(coswt)z;| < rcoswt}. Since for all 7 € A, we have By N By = ¢(1 < i j < k). Then
it is easy to get that By N By = ¢(1 < i 5 j < k) ,when ¢ is sufficiently close to 7. And
'b.y (2.1),(4.2), and remark 3, we have for all r € A, (

]il_I}]‘;l H’U.(t) I i%z(R"\Ui.;l B((coswt)z;,rcoswt)) = ”’U.(t) I l%z - 18;'?_‘ ”U(t)”iz(ui;l B((coswt)z:,rcoswt))

k k
= Z “Qllliz - P_E_l Z ,|u(t)',%2(3((coswt)z,-,rcoswt)) = 07 1= 17 2’ s k. (43)
i=1 =1 )
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vt € [0, 7),we denote B;,; N By by Bi, then
| I’U;(t) I !iz(B((casz)z.-,rcaswt)) - I I’U,(t) I liﬁ(B((coswt)z.',rcoswt)) = / I’U;(t, $)l2d$ - / I’U;(t, $) |2d$
- B

it Biie
=/ o ule, x)|2d$—/ lu(t, z)|?dz.
Bir:\Bit Bie:\BQ:

To get (4.1), it suffices to show for all 7 € 4,

lim lu(t, z)|*dz = 0, i=1,2, .,k _ (4.4)

i Bir:\Bi:

L]

lim lu(t, z)|*dz = 0. i=1,2,..,k. (4.5)

i Bt \Bi:
For a fixed ¢, when ¢ is sufficiently close to 7, we have z;coswt € By = Bi;: N\ By ‘5= ¢, then

T;C08Wt ¢ B4\ B;;. Furthermore, for any j # %, (1 < j < k), we have z,coswt ¢ B;.;\By.
Let us argue it by contradiction. Indeed, assume z;coswt € B;;\B; C B, then when
t is sufficiently close to 7,zjcoswt € By, but z;coswt € By, which contradicts that
Bm_ﬂ Bji = ¢ for r € A. So when t is sufficiently close to 7, for a fixed 4, for r € A, we

have
{z;coswt,i=1,2,..,k.} N (Bir:\Bi:) = ¢,
In fact, since 7 can be arbitrarily chosen, it holds for 7,'.: 1,2,.., k.
(Birs\Bi:) C R"\{z;coswt,i=1,2,..,k.}, i=1,2,.,k.

Then when ¢ is sufficiently close to 7, for sufficiently small 7' € A(r’ depends on r), we

have
. _
(Bir:\Bi) C RB™\ U B(z;coswt, r'coswt), 1=1,2,..,k.
=1 .-
By (4.3)
0< lim/  uto)Pde <lm|ju@)]] —0
t—1 Birs\Bas t—7 L?(R"\‘_LJ1 B(zicoswt,r' coswt))

" This concludes (4.4).

In the same way, when ¢ is sufficiently close to 7, we have

(Bis\Bs) € R*\{zicoswt,i=1,2,..,k.}, i=1,2,..k

11
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for enough small 7' € A,

k
(Bit\Bir) € R™\ U B(z;coswt, r'coswt), i=1,2,.,k.
=1 . .
Then
lim lu(t, z)|*dz = 0. (4.5)

=T B\ Bit

So we get (4.1) by (4.4), (4.5). This concludes the proof of Lemma 6.

With lemma 6, we’re in a position to prove theorem 3 now.

Proof of Theorem 3.
By lemma 6, we get the blow-up solution w of equation (1.1) in C([0,7),X) for some

7 € (0, +00) ( maximal existence time ) such that u satisfies (4.1). We need to show that
u has the properties (1), (2). ;

Step 1. The blow-up solution has the property (1).

For all r € A, by (4.1),

%I_I;E‘ H’U,(t) | ,iz(B(.(coswr)z.;,r)) > 11_1;13 ”U’(t)l{2L2(B((coswr)z.;,rcoswt)) = ”Qzl |%2? 1= 17 27 ) k. (46)

k kE_.
lim ||’U,(t) | |2 k = hmz |I’u’(t)”iz(B((cosz):z:;,r)) > Z HQlHiz
i=1 i=1 )

t—T L2(iL=J1 B((coswt)zi,r)) t—=7T —

According to remark 3 and (2.1), for all r € A, we have

k
: 2 2 —_— 2 —_— 2
I, o rmanry S O = 1y = E_j Qs 152
S0

= S 1IQuE- (47

=1

lim ||u(2)||?
t— H ()HLz(inB((cosw")m“r))

Then for all r € A, we have
11_{13 |_|’u’(t)H%z(B((cosz)m;,r)) = ||Qz”?:2’ i=1,2,.,k (48)
We show (4.8) by contradiction. Assume there is a ¢ such that

1 [[6) [ corponsy > 11Q:11
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then by (4.6),

k k
ll_l;{._l ”u(t)”z * = %I_I;E'Zl ”'U;(t) H%z(B((cosz)z,-,r)) > Zl HQ%' |§,2

Lz(ig1 B((coswt)zi,r))

It contradicts (4.7). This concludes the proof of (1).
Step 2. The blow-up solution has property (2).
By (4.7), for all r € A,

%1_{1} ||u(t)|Iiz(R"\Ui.;lB((cosw-r)x,-,r)) = Hu(t)”iz - 11_1;13 Hu(t”ﬁ:z(ugl B((coswt)z:,r)

=S 11Qu 2 = 11l =o.

=1 =1

We can eaéily check that for all > 0,

lim ||u(t)]] =0. i=1,2,.,k

t—T L2(Rm\ .I;c):l B((eoswr)x;,T)) o

This concludes the proof of theorem 3.

From theorem 3, we get a blow-up solution of with ¥ L?*—mass concentration points,

furthermore, we want to know the local behavior of u at blow-up time. This problem is
answered by the following theorem.
Theorem 4 For any zi,%;..,%; in R”, there is a constant b > 0 such that for
b; > b(i = 1,2,..,k.), there exists a blow-up solution u of equation (1.1) in
C([0,7),Z) for some 7 € (0,+0c0) (maximal existence time). u not only e
concentrates at points (coswT)zy, (coSwT)Zs.., (coswT)zy, but satisfies that there is
a constant vy > 0, such that

1 -
- 2 L= |mﬁu_uﬁm|’ » i)
||u(?) Pr(t)ll; S vt € [0, )

. where
k i ilz|? :
P £) = 1 Z I(tanw_‘r . tan@t)b.|*%e(_(mﬁu-mﬂ"“)b? )+(2(’-‘=ﬁ“-=—’~"-ﬁ-“-‘)(cowz)2 )+(——z‘g-x2ta,nwt)
T (coswt)2 w w t

Q-i (»(ﬁ“ﬁg:(::gz:;:iigoswt ) * .. . (4'9)

Remark 4 Theorem 4 implies that in space L**%, u(t) — P.(t), as t — 7. That’s
to say, the local behavior of u(t) at blow-up time is sufficiently close to that of P.(t).
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Proof of Theorem 4. By lemma 5, for any z;, z,, ..,z in R", there is a constant

b > 0 such that for b; > b(i = 1,2, ..,%.), , there exists a blow-up solution v of equ‘ation
(1.3) which satisfies properties (a), (b), (c). From theorem 3, let u(t,z) is defined by
(3.1), then u(t,z) € C([0,7),%) is a blow-up solution of equ.a,tion (1.1), where [0,7) is
the maximal existence time. u satisfies properties (1),(2). Let P.(¢) be defined by (4.9),

consider
1 tanwt tanwt
t _P t et , _ ,
HU( ) 7-( )||L2+ﬁ' H(cOSwt)% [U( w COSLUt) QT( w coswt)]l|2+—?;
1 tanwt tanwt 4
B (coswt)=+z [lo( w ,-) — @z w ;-)||2+§.

As v(¢) has property (c), there exists a constant v > 0, such that

lo(t) = @r(t)l]o4s < e, vt € [0,T).

‘Note that 7 = arctansT , i.e.,22¢T = T Then there exists a constant -y > 0, such that

w

. 1 — 4
— —_— ]mﬁw-t_mﬁm
||u(t) Pr(t)HLHﬁ' < (coswt)fﬁe I) vVt e [0,7’).

This concludes the proof of theorem 4.

5 Sofme Remarks

From comparison between lemma 5 and theorem 3, we can find, since equation (1.1) hasn’t
the dilation invariancé, harmonic potential |z|* exerts a great influence on equation (1.1).
In fact, for any k points in R™, Merle*¥ has constructed a blow-up solution such that an
L*-mass conceﬁtration phenomenon occurs just at the k& points and the set of blow-up
points is the & points . The definition of blow-up solution is following:

Definition: zo(z, € R") is called a blow-up; point of solution u(t) in space L**= .(or

HY(R™), if:

lim 1wl 2+ (Bag.ry = T00 vr > 0.
or .%im |w()|| e (B o) = +00, Vr > 0.
~>T . .

In this paper, due to the influence of harmonic potential, L*-mass of the blow-up solution
constructed by theorem 3 concentrates not at the original £ points but at the correspond-

ing k other points whose point-vector lengths are reduced. However, whether or not the

14



corresponding k points constitute the set of blow-up points of the blow-up solution is the

problem that we’re concerned about. Since we can’t turn the limit of integral on neigh-

borhoods of moving point into the limit of integral on neighborhoods of a fixed point by

technically treatment, we will make further study on these problems in the work later.
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